Об интерполяционном операторе четвертого порядка точности для разностного решения трехмерного уравнения Лапласа
А.А. Досиев1, Э. Целикер2
1Department of Mechanics and Mathematics, Western Caspian University, Baku, Azerbaijan dosiyevadiguzel@gmail.com 2University of Leicester, Leicester, UK ec403@leicester.ac.uk
Ключевые слова: 3D уравнение Лапласа, кубические сетки на параллелепипеде, 15-и точечная схема, интерполяция для гармонических функций, дискретное преобразование Фурье
Страницы: 33-48
Аннотация
Для получения решения четвертого порядка точности задачи Дирихле для уравнения Лапласа в прямоугольном параллелепипеде предлагается трехмерный (3D) оператор согласования. Оператор строится на основе однородных ортогонально-гармонических многочленов в трех переменных и использует разностное решение задачи на кубической сетке для получения приближенного решения между узлами сетки. Разностное решение в узлах, используемых оператором интерполяции, вычисляется по новой формуле, разработанной на основе дискретного преобразования Фурье. Эта формула может применяться прямо к требуемым узлам без решения всей системы разностных уравнений. Четвертый порядок точности построенных численных инструментов демонстрируется на численном примере.
DOI: 10.15372/SJNM20240103 EDN: QVITJA
|