Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 35.175.107.77
    [SESS_TIME] => 1635078452
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 50fab6b903487b57bec7fe66e6e998ca
    [UNIQUE_KEY] => 8727eb91e3e4462020307de61100c4c9
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2014 год, номер 2

Весовые алгоритмы метода Монте-Карло для оценки и параметрического анализа решения кинетического уравнения коагуляции

А.В. Бурмистров1, М.А. Коротченко2
1Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, просп. Акад. М.А. Лаврентьева, 6, Новосибирск, 630090
burm@osmf.sscc.ru
2Новосибирский государственный университет, ул. Пирогова, 2, Новосибирск, 630090
kmaria@osmf.sscc.ru
Ключевые слова: статистическое моделирование, эволюция многочастичной системы, уравнение Смолуховского, функция ценности, параметрическая производная, мультипликативный вес, трудоемкость
Страницы: 125-138

Аннотация

Рассматривается уравнение Смолуховского с линейными коэффициентами коагуляции, зависящими от двух параметров. Построены весовые алгоритмы для оценки линейных функционалов от решения рассматриваемого уравнения. Предложенные алгоритмы позволяют одновременно оценивать как функционалы для различных наборов параметров, так и параметрические производные. Кроме того, в работе разработаны ценностные алгоритмы и проанализирована их эффективность для вычисления двух функционалов: концентрации мономеров в ансамбле в заданный момент времени, а также концентрации мономеров и димеров. Значительное уменьшение трудоемкости достигается путем ценностного моделирования двух элементарных переходов: выбора времени между взаимодействиями и выбора номера пары взаимодействующих частиц.