Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 35.175.107.77
    [SESS_TIME] => 1635080482
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 762ccb811e0f68e18cc77c126a2318fc
    [UNIQUE_KEY] => b5ef22c959e3255ec69fb32ee39a9c3d
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2019 год, номер 2

Рандомизированные алгоритмы метода Монте-Карло для задач со случайными параметрами (метод “двойной рандомизации”)

Г.А. Михайлов1,2
1Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия, 630090
gam@sscc.ru
2Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия, 630090
Ключевые слова: вероятностная модель, статистическое моделирование, случайный параметр, рандомизированный алгоритм, метод двойной рандомизации, случайная среда, метод расщепления, статистическая ядерная оценка, probabilistic model, statistic modeling, random parameter, randomized algorithm, double randomization method, random medium, splitting method, statistic kernel estimator
Страницы: 187-200

Аннотация

Рандомизированные алгоритмы метода Монте-Карло строятся путем совместной реализации базовой вероятностной модели задачи и ее случайных параметров с целью исследования параметрического распределения линейных функционалов. В работе представлена оптимизация таких алгоритмов, причем для оценки плотности распределения используется статистическая ядерная оценка. Формулируется также рандомизированный проекционный алгоритм для оценки распределения нелинейного функционала с приложением к решению задачи исследования флуктуаций критичности процесса размножения частиц в случайной среде.

DOI: 10.15372/SJNM20190205
Добавить в корзину
Товар добавлен в корзину