Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 18.206.238.189
    [SESS_TIME] => 1711692473
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 974cfafa0a161481dbca7cb52d53a4d9
    [UNIQUE_KEY] => 7c1c1d7895ed0d948513518d791cd090
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Прикладная механика и техническая физика

2022 год, номер 3

Численное моделирование течения в датчике для измерения температуры торможения потока в импульсных аэродинамических установках

И.С. Цырюльников, Т.А. Коротаева, А.А. Маслов
Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН, Новосибирск, 630090, Россия
tsivan@itam.nsc.ru
Ключевые слова: численное моделирование, датчик температуры торможения, термопара, постоянная времени, деконволюция, импульсные аэродинамические трубы
Страницы: 75-87

Аннотация

Рассматривается проблема измерения температуры потока газа с помощью термопар, для которых время достижения равновесной температуры меньше времени процесса измерения. Представлены результаты численного моделирования течения газа в датчике, используемом для измерения температуры торможения в аэродинамических трубах кратковременного действия. Решается сопряженная задача обтекания датчика сверхзвуковым потоком и рассчитывается поле течения внутри камеры торможения. Определяется температура термопары, установленной в торце камеры торможения. Результаты моделирования показаний термопары зависят от времени и параметров набегающего потока. Полученные показания датчика температуры торможения принимаются в качестве данных виртуального эксперимента, которые обрабатываются с помощью методов экспериментальной аэродинамики. Для восстановления температуры торможения используются метод "ступенчатого процесса" и метод "двух термопар". Разность показаний термопар представляет собой нормированную аппаратную функцию термопары. Истинные показания температуры восстанавливаются методом деконволюции. Восстановленные показания сравниваются с исходными значениями температуры торможения в набегающем на датчик потоке. Определяются источники погрешностей, возникающих при измерении, и обосновывается применимость экспериментальных методов для определения температуры торможения в аэродинамических установках кратковременного действия, в том числе с уменьшающимися со временем значениями параметров.

DOI: 10.15372/PMTF20220308
Добавить в корзину
Товар добавлен в корзину