УДК 534.222.2,544.454.3

НЕПРЕРЫВНАЯ ДЕТОНАЦИЯ СМЕСИ ЖИДКИЙ КЕРОСИН — ВОЗДУХ С ДОБАВКОЙ ВОДОРОДА ИЛИ СИНТЕЗ-ГАЗА

Ф. А. Быковский, С. А. Ждан, Е. Ф. Ведерников

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск, zhdan@hydro.nsc.ru

В проточной кольцевой цилиндрической камере диаметром 503 мм реализованы и исследованы режимы непрерывной детонации гетерогенных смесей авиационный керосин — воздух с добавками водорода или синтез-газа. При варьировании расходов воздуха, жидкого керосина, водорода и их соотношения получены режимы непрерывной спиновой детонации в следующих диапазонах: число поперечных детонационных волн $1 \div 5$, их скорость $1.15 \div 1.67$ км/с и частота вращения $0.73 \div 4.86$ кГц. Для синтез-газа состава CO + $3H_2$ зарегистрированы режимы с двумя встречными поперечными волнами, имеющими среднюю скорость вращения $0.66 \div 1.47$ км/с и частоту 0.85 ÷ 1.87 кГц. Применение в системе подачи горючего способа барботирования жидкого керосина газообразным горючим (водородом или синтез-газом) позволило уменьшить массовую долю газа в двухфазном горючем до 8.4 % для водорода и до 47 % для синтез-газа состава CO + 3H₂. Показано, что минимальное содержание синтез-газа в керосине, при котором наблюдается детонационный режим, определяется количеством водорода. По измеренным на выходе из камеры сгорания давлениям торможения определены удельные импульсы при непрерывной детонации в зависимости от состава двухфазного горючего. Максимальное значение удельного импульса около 4000 с получено при массовой доле водорода в двухфазном горючем 42 %. Приведены оценки минимального диаметра кольцевой детонационной камеры сгорания в зависимости от удельного расхода гетерогенной смеси.

Ключевые слова: непрерывная спиновая детонация, жидкий керосин, воздух, водород, синтезгаз, поперечные детонационные волны, кольцевая камера сгорания.

DOI 10.15372/FGV20190510

ВВЕДЕНИЕ

Результаты систематических исследований непрерывной спиновой детонации (НСД) по схеме Б. В. Войцеховского [1] обобщены в книге [2]. Обзор современного состояния экспериментальных исследований НСД в проточных кольцевых камерах сгорания (КС) (вариант воздушно-реактивного двигателя) для ряда газовых топливно-воздушных смесей (ТВС), таких как ацетилен — воздух, водород — воздух, синтез-газ — воздух, представлен в обзоре [3], а реализация НСД в ТВС с труднодетонируемым бинарным горючим метан/водород — в [4]. Тем самым экспериментально было доказано, что все газовые ТВС, в том числе самая труднодетонируемая смесь метан — воздух с добавками водорода, могут детонировать в режиме НСД в проточных кольцевых КС, если диаметр камеры больше критического.

Особый научный и практический интерес представляют исследования НСД гетерогенных смесей жидкое углеводородное горючее — газообразный воздух. Детонационное сжигание гетерогенных ТВС (жидкие горючие: керосин и дизельное топливо) в КС плоскорадиальной геометрии диаметром $d_{c1} = 204$ мм впервые было реализовано и исследовано в [5]. В кольцевой цилиндрической проточной камере диаметром $d_c = 306$ мм реализовать НСД смеси с жидким керосином удалось лишь при обогащении воздуха кислородом в массовом соотношении $[O_2]$: $[N_2] = 1 : 1$ [6]. Результаты по реализации НСД в кольцевой камере диаметром $d_{c1} = 168$ мм для гетерогенной смеси, состоящей из керосина с 20%-й добавкой изопропилнитрата, водорода (более 30 %) и воздуха, описаны в [7]. Первые результаты по реализации НСД в двухфазной смеси авиационный керосин (TC-1) — воздух с добавкой газообразно-

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (проект № 13-01-00178а) (п. 2.1) и программы фундаментальных научных исследований III.22.2.1 (п. 2.2).

[©] Быковский Ф. А., Ждан С. А., Ведерников Е. Ф., 2019.

го водорода в проточной кольцевой цилиндрической КС диаметром 503 мм (ДК-500) приведены в [8]. Причем барботирование TC-1 водородом позволило снизить массовую долю H_2 в смесевом горючем до 8.4 %.

В данной работе представлены обобщающие результаты экспериментов в камере сгорания ДК-500 по реализации режима НСД смеси ТС-1 — воздух при барботировании авиационного керосина водородом или синтез-газом. Проведен также анализ влияния состава горючего газа добавки, барботирующего ТС-1, на параметры НСД двухфазной смеси авиационный керосин/горючий газ — воздух и области ее реализации.

1. ПОСТАНОВКА ЭКСПЕРИМЕНТОВ

Проточная цилиндрическая кольцевая камера сгорания ДК-500 представляла собой коаксиальный канал 1 диаметром $d_c = 503$ мм, длиной $L_c = 490$ мм с зазором между стенками $\Delta = 18$ мм (рис. 1). Площадь проходного сечения канала камеры $S_{\Delta} = \pi (d_c - \Delta) \Delta =$ 274.1 см². Для подачи воздуха использовались два ресивера объемом $V_{r,a} = 42$ и 87.7 л при добавке в керосин водорода и синтез-газа соответственно. При этом в первом случае воздух в кольцевой коллектор 2 подавался через радиальные, а во втором — через тангенциально ориентированные вводы. Далее воздух поступал в КС через кольцевую щель 3 шириной $\delta = 3.5$ мм (площадь проходного сечения щели $S_{\delta} = \pi (d_c - \delta) \delta = 54.9$ см²). Степень расширения канала 1 камеры $K_S = S_\Delta/S_\delta = 5.0.$ Жидкое горючее авиационный керосин (TC-1)

Рис. 1. Схема камеры сгорания ДК-500 для исследования НСД в гетерогенной смеси керосин — воздух с добавкой водорода или синтезгаза

из расходомера 7 через диафрагму 8 вытеснялся в коллектор 4, а затем через форсунки 5 подавался в камеру. Давление на поршень осуществлялось газообразным горючим, поступающим из ресивера объемом $V_{r,f} = 13.8$ л (на рис. 1 не показан). Часть газообразного горючего через диафрагму 9 подавали в смеситель 6, осуществляя его барботирование в жидком керосине перед подачей в коллектор 4.

Начальные давления в ресиверах воздуха и горючего газа устанавливали постоянными: воздух — $p_{r,a1} = p_{r,a2} = 60 \cdot 10^5$ Па, водород — $p_{r,f0} = 65 \cdot 10^5$ Па, синтез-газ $p_{r,f0} = 70 \cdot 10^5$ Па. В опытах, длительность которых лимитировалась временем истечения жидкого керосина (≈ 0.3 с), расходы компонентов гетерогенной смеси, определяемые по методике [2], изменялись в диапазонах: воздух — $G_a = 7.0 \div 14.8$ кг/с, жидкий керосин — $G_{ker} =$ $0.06 \div 1$ кг/с, газообразное горючее — $G_q =$ $0.06 \div 0.8$ кг/с. При этом массовая доля газа в двухфазном горючем $m_g = G_g/(G_{ker} + G_g)$ изменялась в пределах $m_g = 8.4 \div 42$ % при добавке водорода, $m_g = 30 \div 45$ % при добавке синтез-газа состава СО + H2 и $m_g = 16 \div 68~\%$ для состава CO + 3H₂. Доля водорода в синтез-газе составляла $m_{q,H} = 2.8 \div 12 \%$.

Удельные расходы воздуха через кольцевую щель (критическое сечение) на входе в ДК-500 $g_{\delta} = G_a/S_{\delta}$ и ТВС через проходное сечение канала КС $g_{\Sigma} = (G_a + G_{ker} +$ $(G_g)/S_{\Delta} = g_{\delta}(1 + \phi_{ker}/\chi_{ker,st} + \phi_g/\chi_{g,st})/K_S$ в разных опытах варьировались в диапазонах $g_{\delta} = 310 \div 4240$ кг/(с · м²) и $g_{\Sigma} =$ $66 \div 956 \text{ кг/(c \cdot m^2)}$. Коэффициенты избытка керосина и газообразного горючего изменялись в пределах $\phi_{ker} = (G_{ker}/G_a)\chi_{ker,st} = 0.17 \div 1.3,$ $\phi_g = (G_g/G_a)\chi_{g,st} = 0.14 \div 0.52$. Здесь $\chi_{ker,st} =$ $G_a/G_{ker,st} = 15.24, \ \chi_{\mathrm{H},st} = G_a/G_{\mathrm{H},st} = 34.63,$ $\chi_{sq,st} = G_a/G_{sq,st} = 8.08$ — стехиометрические коэффициенты соответственно керосина, водорода и синтез-газа состава CO + 3H₂. Процесс инициировался так же, как в [8], пережиганием полоски алюминиевой фольги с выделением энергии ≈ 5 Дж на расстоянии 150 мм от торца КС, а истечение продуктов детонации осуществлялось в окружающую атмосферу с давлением $p_a = 10^5$ Па.

Процесс в ДК-500 фотографировался высокоскоростной камерой Photron Fastcam SA1.1 675K-M3 в режиме съемки 420000 кадр/с через продольные окна из оргстекла 10 (см. рис. 1), расположенные друг за другом вдоль стенки камеры. Ширина каждого окна 20 мм, длина 93 мм. Расстояние между окнами — 24 мм, а от края первого окна до торца камеры — 29 мм. Размеры окон служили масштабом происходящих явлений. Обработка фотографий и получение фоторегистрограмм, по которым определяли частоту вращения f поперечной детонационной волны (ПДВ) и скорость НСД D (относительно среднего диаметра кольцевого зазора КС), аналогичны [6]. Регистрация давления в ресиверах газообразного горючего $(p_{r,f})$ и воздуха $(p_{r,a1},$ $p_{r,a2}$) и в соответствующих коллекторах ($p_{m,f}$ и $p_{m,a}$), а также статического (p_{c1}, p_{c2}, p_{c3}) и полного (p_{c30}) давления осуществлялась на расстоянии 15, 100 мм от переднего торца камеры (p_{c1}, p_{c2}) и вблизи ее выхода $(p_{c3} u p_{c30})$ датчиками давления S-10 фирмы «ВИКА». Ход поршня L_p расходомера 7 регистрировался реостатным датчиком 11. Регистрация давлений, хода поршня и фотоизображений, а также их обработка проводились с помощью компьютера.

2. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

В камере ДК-500 при $K_S = 5.0$ в области указанных выше параметров подачи холодных ($T_0 = 293$ K) компонентов гетерогенной ТВС (G_a, G_{ker}, G_g) с двухфазным горючим жидкий керосин ТС-1 — газообразное горючее (водород или синтез-газ) были осуществлены режимы НСД с числом ПДВ $n = 1 \div 5$.

2.1. Двухфазное горючее керосин/Н₂

На рис. 2 представлены типичные фрагменты фоторегистрограмм ПДВ пятиволнового (a), трехволнового (b) и одноволнового (b)режимов НСД в двухфазной смеси TC-1/H₂ воздух. ПДВ движутся слева направо, они достаточно стабильны на данном отрезке времени. Шлейф отклонен назад, что указывает на интенсивную детонационную волну. При $g_{\Sigma} =$ 527 кг/(с \cdot м²), $\phi_{ker} = 0.32, \phi_g = 0.51$ был реализован (см. рис. 2, а) пятиволновый режим НСД с частотой ПДВ f=4.86к
Гц и скоростью детонации D = 1.48 км/с при $m_q = 42$ %. Высота фронта ПДВ составляла около $h = 60 \div 70$ мм. При $g_{\Sigma} = 557 \text{ kr}/(\text{c}\cdot\text{m}^2), \, \phi_{ker} = 0.68, \, \phi_g = 0.41$ реализован (см. рис. 2,6) трехволновый режим НСД с f = 2.93 кГц и D = 1.49 км/с при $m_q =$

Рис. 2. Фрагменты фоторегистрограмм ПДВ в двухфазной смеси TC-1/H₂ — воздух в камере сгорания ДК-500:

 $\begin{array}{l} a - g_{\delta} = 2\,544 \, \, \mathrm{kr}/(\mathrm{c} \cdot \mathrm{m}^2), \, \phi_{ker} = 0.32, \, \phi_g = 0.51, \\ n = 5; \, \delta - g_{\delta} = 2\,636 \, \, \mathrm{kr}/(\mathrm{c} \cdot \mathrm{m}^2), \, \phi_{ker} = 0.68, \, \phi_g = 0.41, \, n = 3; \, \epsilon - g_{\delta} = 1\,657 \, \, \mathrm{kr}/(\mathrm{c} \cdot \mathrm{m}^2), \, \phi_{ker} = 1.27, \\ \phi_g = 0.27, \, n = 1 \end{array}$

21 %. Высота фронта ПДВ $h = 100 \div 120$ мм. Уменьшение массовой доли H₂ в двухфазном горючем m_g в два раза (до 21 %) приводит к уменьшению числа вращающихся ПДВ с пяти до трех. При $g_{\Sigma} = 362 \text{ кг/(c} \cdot \text{м}^2), \phi_{ker} = 1.27, \phi_g = 0.27$ наблюдали (см. рис. 2,6) одноволновый режим НСД с f = 1.02 кГц и D = 1.56 км/спри минимальном значении $m_g = 8.4$ %. Ярко светящаяся часть фронта ПДВ примерно вдвое больше, чем на рис. 2,*a*. Линии тока натекающей смеси видны и в верхней части второго окна, но из-за слабого свечения волны затруднительно утверждать, что в этой части фронта идет интенсивное энерговыделение.

По фоторегистрограммам определялось время появления ПДВ против окна Δt , которое позволяет однозначно находить частоту их вращения f и скорость НСД D по формулам

$$f = \frac{1}{\Delta t}, \quad D = \frac{\pi \langle d_c \rangle}{n \Delta t},$$

где $\langle d_c \rangle = d_c - \Delta$.

Данные по частоте f, числу ПДВ n, скорости НСД D и области реализации НСД в

Т	\mathbf{a}	б	л	И	ц	\mathbf{a}	1

$m_g, \%$	g_{Σ} , кг/(с · м ²)	ϕ_{ker}	ϕ_g	p_{c30}/p_a	f , к Γ ц	D, км/с	n
$42 \rightarrow 32$	$\begin{array}{c} 538 \rightarrow 518 \\ 513 \rightarrow 472 \\ 460 \rightarrow 392 \\ 385 \rightarrow 362 \\ 336 \rightarrow 308 \\ 294 \rightarrow 282 \end{array}$	$\begin{array}{c} 0.32 \\ 0.32 \\ 0.32 \rightarrow 0.29 \\ 0.27 \\ 0.26 \\ 0.27 \end{array}$	$\begin{array}{c} 0.51 \\ 0.48 \rightarrow 0.46 \\ 0.44 \rightarrow 0.38 \\ 0.37 \rightarrow 0.33 \\ 0.32 \rightarrow 0.3 \\ 0.29 \rightarrow 0.28 \end{array}$	$\begin{array}{c} 5.75 \\ 5.9 \rightarrow 5.8 \\ 5.6 \rightarrow 4.55 \\ 4.25 \rightarrow 3.6 \\ 3.5 \rightarrow 2.82 \\ 2.7 \rightarrow 2.0 \end{array}$	$\begin{array}{c} 4.86 \\ 4.23 \rightarrow 3.96 \\ 3.17 \rightarrow 2.53 \\ 1.96 \rightarrow 1.8 \\ 1.8 \leftrightarrow 1 \\ 1.01 \rightarrow 0.77 \end{array}$	$\begin{array}{c} 1.48 \\ 1.67 \rightarrow 1.57 \\ 1.67 \rightarrow 1.33 \\ 1.55 \rightarrow 1.37 \\ 1.8 \leftrightarrow 1.01 \\ 1.53 \leftrightarrow 1.21 \end{array}$	5 4 3 2 $2 \leftrightarrow 1$ 1
$21 \rightarrow 16$	$\begin{array}{c} 557 \rightarrow 485 \\ 466 \rightarrow 419 \\ 412 \rightarrow 351 \\ 323 \rightarrow 270 \end{array}$	$\begin{array}{c} 0.68 \div 0.75 \\ 0.66 \div 0.71 \\ 0.66 \div 0.71 \\ 0.66 \div 0.69 \end{array}$	$\begin{array}{c} 0.41 \to 0.38 \\ 0.37 \to 0.36 \\ 0.34 \to 0.33 \\ 0.32 \to 0.3 \end{array}$	$5.7 \to 5.3$ $4.7 \to 4.24$ $4 \to 3.32$ $3.1 \to 2.1$	$\begin{array}{c} 3.04 ightarrow 2.51 \\ 1.99 ightarrow 1.62 \\ \\ 0.96 ightarrow 0.73 \end{array}$	$1.6 \rightarrow 1.32$ $1.57 \rightarrow 1.28$ - $1.52 \rightarrow 1.15$	$\begin{array}{c} 3\\ 2\\ 2 \leftrightarrow 1\\ 1 \end{array}$
$8.7 \rightarrow 8.4$	$\begin{array}{c} 564\\ 542 \rightarrow 450\\ 430 \rightarrow 378\\ 362 \rightarrow 346 \end{array}$	$1.18 \\ 1.18 \div 1.2 \\ 1.2 \div 1.28 \\ 1.29 \div 1.3$	$\begin{array}{c} 0.25 \\ 0.25 \rightarrow 0.26 \\ 0.26 \rightarrow 0.27 \\ 0.27 \end{array}$	$\begin{array}{c} 4.09\\ 4.0\\ 4 \rightarrow 3.3\\ 3.2 \rightarrow 3.0 \end{array}$	$\begin{array}{c} 2.6 \\ 1.89 \rightarrow 1.67 \\ - \\ 1.02 \rightarrow 0.95 \end{array}$	$\begin{array}{c} 1.32 \\ 1.49 \rightarrow 1.32 \\ - \\ 1.56 \rightarrow 1.5 \end{array}$	$\begin{array}{c} 3\\ 2\\ 2 \leftrightarrow 1\\ 1 \end{array}$

Параметры НСД двухфазной смеси керосин/водород — воздух

 Π римечание. Символ \leftrightarrow означает переход от одного количества волн к другому и обратно.

двухфазной смеси TC-1/H₂ — воздух в камере сгорания ДК-500 представлены в табл. 1. Из табл. 1 следует, что в гетерогенной смеси керосин/водород — воздух при уменьшении массовой доли водорода в двухфазном горючем и удельного расхода воздуха уменьшаются количество ПДВ и частота их вращения. Отметим также, что в камере ДК-500 в исследованном диапазоне расходов ТВС реализовать НСД смеси керосин — воздух без добавки водорода не удалось, наблюдался только режим турбулентного горения за пределами КС.

Осциллограммы давления в ресиверах воздуха $(p_{r,a1}, p_{r,a2})$ и газообразного горючего $(p_{r,f})$ для представленного на рис. 2,6 режима НСД приведены на рис. 3,а, давление в коллекторе воздуха $(p_{m,a})$ и в КС (p_c) — на рис. 3, б. Резкий подъем давления в камере соответствует моменту инициирования детонации. На рис. 3 вертикальными штриховыми линиями 1–3 разграничены области, в которых течение в камере ДК-500 существенно отличается, а именно: 1 — момент инициирования (через 1.5 мс сформировались ПДВ), 2 — момент, соответствующий приведенным на рис. 2, б параметрам ПДВ, 3 — конец детонационного режима. Заметим, что от начала до конца детонационного режима истечение продуктов из КС происходило при сверхкритическом перепаде давления $(p_{c30} > p_{cr})$. Срыв детонации и вырождение ее в режим горения (правее линии 3) отмечаются резким спадом давления в KC. После этого фиксируется докритическое истечение из KC. Критическое давление вычислялось по известной формуле $p_{cr} = (0.5(\gamma + 1))^{\gamma/(\gamma-1)}p_{c3}$.

Из рис. 3,6 видно, что перед инициированием детонации на выходе КС развивается струйное течение — $p_{c3} \approx 0.35 \cdot 10^5 \text{ Па} \ll 1 \cdot 10^5 \text{ Па}$. В момент инициирования давление в коллекторе воздуха составляет $p_{m,a} = 13 \cdot 10^5 \text{ Па}$ и максимальное полное давление продуктов на выходе из КС $p_{c30} \approx 5.75 \cdot 10^5 \text{ Па}$.

На рис. 4 представлены обобщающие зависимости частоты вращения ПДВ f от удельного расхода двухфазной смеси TC-1/H₂ — воздух (точки 1–3) и газовой смеси H₂ — воздух ($m_g = 100 \%$, $\phi = 1.0 \div 1.15$) (точки 4). Там же для сравнения приведены (точки 5) экспериментальные данные [7].

Видно, что в ДК-500 в двухфазной смеси ТС-1/H₂ — воздух при $g_{\Sigma} \approx 270 \text{ кг/(c} \cdot \text{м}^2)$ реализуется одноволновый режим НСД (n = 1), затем с ростом расхода g_{Σ} — двухволновый (n = 2), трехволновый (n = 3) и т. д. Причем с ростом g_{Σ} при фиксированном значении параметра m_g частота вращения ПДВ, как правило, монотонно растет, достигая при $g_{\Sigma} =$ 536 кг/(c · м²) и $m_g \approx 42 \%$ (точки 1) значения f = 4.86 кГц, при $g_{\Sigma} = 557 \text{ кг/(c} \cdot \text{м}^2)$ и $m_g \approx 21 \%$ (точки 2) — $f \approx 3 \text{ кГц}$, а при $g_{\Sigma} =$

Рис. 3. Осциллограммы давления:

a— в системе подачи, б
— в коллекторе воздуха и камере ДК-500; 1–3 — границы между областями с
 различным течением

564 кг/(с · м²) и $m_g \approx 8.7 \%$ (точки 3) — $f \approx 2.6$ кГц. С уменьшением параметра m_g область перехода от $n = 1 \rightarrow 2$ сдвигалась вправо по расходу ТВС, при этом наблюдалась нерегулярность структуры ПДВ, которая на фоторегистрограммах проявлялась в виде спонтанного чередования одноволновых и двухволновых структур.

Данные на рис. 4 показывают, что для газовой смеси H_2 — воздух частота вращения ПДВ имеет наибольшие значения, а кривая 4 является огибающей сверху частот ПДВ

Рис. 4. Частота ПДВ в зависимости от удельного расхода смеси в камере сгорания ДК-500 для двухфазного горючего TC-1/H₂ трех составов:

 $\begin{array}{l} 1-m_g\approx 42~\%,~2-21~\%,~3-9~\%,~4-100~\%,\\ 5-30\div 37~\%~[7] \end{array}$

исследованных составов двухфазных смесей TC-1/H₂ — воздух (кривые 1–3). Из рис. 4 также следует, что режимы HCД двухфазных смесей керосин/водород — воздух в ДК-500 получены (кривые 1–3) при удельных расходах на порядок больших, чем в работе [7].

При фиксации режимов НСД в исследуемой гетерогенной смеси возникал естественный вопрос: может ли газообразный водород самостоятельно детонировать, а капли керосина просто служить добавкой? Ответ на него дает рис. 5, где представлены зависимости коэффициента избытка водорода $\phi_{\rm H_2}$ от удельного расхода двухфазной смеси керосин/H₂ — воздух q_{Σ} при реализации режимов НСД. Видно, что в исследованном диапазоне удельных расходов смеси значения ϕ_{H_2} меньше величины нижнего концентрационного предела классической газовой детонации смеси H_2 — воздух $\phi_{H_2,min} \approx 0.5$ [9]. Последнее означает, что водород, добавляемый в керосин, не может самостоятельно детонировать и, следовательно, режимы НСД гетерогенной смеси керосин/H₂ — воздух реализуются при сжигании значительной части жидкого керосина во фронте ПДВ. То есть в описанных выше экспериментах мы действительно наблюдаем режимы гетерогенной непрерывной спиновой детонации.

Рис. 5. Коэффициент избытка водорода в зависимости от удельного расхода смеси в камере сгорания ДК-500 для двухфазного горючего TC-1/H₂ трех составов:

 $1-m_g\approx 42$ %, 2-21%, 3-9%; штриховая линия — [9]

2.2. Двухфазное горючее керосин/синтез-газ

Использование синтез-газа в качестве добавки к керосину интересно тем, что синтез-газ можно получать непосредственно из керосина путем его частичного окисления или конверсии с добавкой водяного пара [10].

В этой серии опытов жидкий авиационный керосин барботировался синтез-газом составов СО + H₂ и СО + 3H₂. Опыты с добавкой $m_g = 38 \div 45$ % в керосин синтез-газа состава СО + H₂ показали, что при расходах ТВС $g_{\Sigma} = 956 \rightarrow 310 \text{ кг/(с} \cdot \text{м}^2)$ реализовать НСД не удается. Двухфазное горючее керосин/синтез-газ частично сжигалось в КС

Рис. 6. Фрагмент фоторегистрограммы процесса горения в двухфазной смеси керосин/(CO + H₂) — воздух:

 $g_{\Sigma} = 918 \text{ кг/(с \cdot M^2)}, \ \phi_{ker} = 0.77, \ \phi_g = 0.14, \ \phi_{\Sigma} = 0.91, \ m_g = 38 \ \%, \ p_{c1} = 2.3 \cdot 10^5 \text{ Па}, \ p_{c30} = 3 \cdot 10^5 \text{ Па}$

в режиме обычного горения (рис. 6) и дожигалось уже за ее пределами. Отметим, что массовая концентрация H_2 в двухфазном горючем составляла $m_{g,H} = 2.5 \div 3$ %. Яркая вспышка справа вверху — инициирование двухфазной смеси струей продуктов сгорания смеси $C_2H_2 + O_2$, а светящиеся траектории слева — течение продуктов как подсвечивающей, так и горящей двухфазной смеси.

В камере ДК-500 для смеси двухфазного горючего авиационный керосин/синтез-газ (CO + 3H₂) с воздухом при добавке в керосин синтез-газа состава СО + $3\mathrm{H}_2$ в пределах массовой доли $m_{g} = 47 \div 55 \ \% \ (m_{q,\mathrm{H}} = 8.3 \div 9.8 \ \%)$ впервые реализован режим непрерывной многофронтовой детонации с двумя встречными ПДВ. Заметим, что режим непрерывной многофронтовой детонации ранее наблюдали в труднодетонируемой газовой смеси метан — воздух с добавками водорода — CH₄ + 2H₂ и $CH_4 + 1.5H_2$ [4]. Встречное движение поперечных детонационных волн обнаруживается при просмотре кадров видеосъемки в режиме кино. Фрагмент фоторегистрограммы режима непрерывной многофронтовой детонации при $g_{\Sigma} =$ 200 кг/(с · м²) и $m_q = 48$ % приведен на рис. 7.

Поперечная волна ВС движется по свежей смеси слева направо. После столкновения со встречной ПДВ она отражается волной B'C', движущейся в основном по продуктам за прямой волной BC в обратном направлении, и в большей своей части является ударной. При приближении к противоположной точке столкновения слой натекающей смеси увеличивается и волна выходит на детонационные параметры. На данном фрагменте точка (вернее, сложная поверхность) столкновения волн находится вблизи окна камеры, поэтому прямая и отраженная волны фиксируются достаточно контрастно. При столкновении волн под углом $\pm 90^{\circ}$ от окон камеры они (прямая и отраженная волны) фиксируются с похожей нерегулярной структурой и находятся в переходной стадии от ударной к детонационной. Компьютерная программа формирования фоторегистрограммы из видеокадров течения в системе волны не различает направления движения волны. Поэтому на рис. 7 падающая волна ВС и отраженная B'C' имеют выпуклость в одну сторону, тогда как на самом деле их выпуклость должна быть в противоположные стороны.

Уменьшение массовой доли газообразного горючего до $m_q \approx 42 \div 43$ % привело в

Рис. 7. Фрагмент фоторегистрограммы ПДВ в двухфазной смеси керосин/(CO + 3H₂) — воздух: $g_{\Sigma} = 200 \text{ кг/(c \cdot M^2)}, \phi_{ker} = 0.85, \phi_g = 0.416, \phi_{\Sigma} = 1.27, m_g = 48 \%, p_{c1} = 1.8 \cdot 10^5 \text{ Па}, p_{c30} = 1.8 \cdot 10^5 \text{ Па}, \langle D \rangle = 1.33 \text{ км/c} (f = 1.7 \text{ к}\Gamma \text{ц}), n = 2$

$m_g,\%$	g_{Σ} , кг/(с · м ²)	ϕ_{ker}	ϕ_g	p_{c30}/p_a	f , к Γ ц	$\langle D \rangle$, км/с	n
$\begin{array}{c} 38 \rightarrow 45 \\ \mathrm{CO} + \mathrm{H_2} \end{array}$	$956 \rightarrow 309$	$0.77 \rightarrow 0.75$	$0.14 \rightarrow 0.23$	$3 \rightarrow 1.14$	Í	Í	
$\begin{array}{c} 47 \rightarrow 54 \\ \mathrm{CO} + 3\mathrm{H}_2 \end{array}$	$443 \rightarrow 72$	$0.62 \rightarrow 0.52$	$0.35 \rightarrow 0.51$	$3.5 \rightarrow 1.0$	$1.87 \rightarrow 0.96$	$1.76 \rightarrow 0.8$	2
$\begin{array}{c} 42 \rightarrow 43 \\ 43 \rightarrow 0.37 \\ \mathrm{CO} + 3\mathrm{H}_2 \end{array}$	$\begin{array}{c} 622 \rightarrow 198 \\ 198 \rightarrow 86 \end{array}$	$\begin{array}{c} 0.67 \rightarrow 0.98 \\ 0.98 \rightarrow 1.6 \end{array}$	$\begin{array}{c} 0.26 \rightarrow 0.39 \\ 0.39 \rightarrow 0.51 \end{array}$	$\begin{array}{c} 2.7 \rightarrow 1.3 \\ 1.6 \rightarrow 1.0 \end{array}$	$0.99 \xrightarrow{-} 0.85$	$0.78 \rightarrow 0.66$	2

Параметры непрерывной детонации двухфазной смеси керосин/синтез-газ — воздух

диапазоне удельных расходов $g_{\Sigma} = 622 \rightarrow 198 \text{ кг/(c} \cdot \text{м}^2)$ к обычному горению в КС. Однако при докритическом истечении продуктов из КС ($g_{\Sigma} \approx 198 \text{ кг/(c} \cdot \text{м}^2)$) наблюдались встречные ПДВ, которые существовали вплоть до $g_{\Sigma} = 86 \text{ кг/(c} \cdot \text{м}^2)$, $\phi_{\Sigma} = 2.11$ при $p_{c30} \approx 1 \cdot 10^5$ Па. Отметим, что нерегулярные встречные ПДВ наблюдались и при добавке синтез-газа состава СО + H₂ в керосин при докритическом истечении продуктов из КС ($g_{\Sigma} < 309 \text{ кг/(c} \cdot \text{м}^2)$). Область реализации непрерывной многофронтовой детонации двухфазной смеси TC-1/(CO + 3H₂) — воздух в ДК-500 представлена в табл. 2.

3. АНАЛИЗ РЕЗУЛЬТАТОВ

3.1. Сравнение эффективности добавок горючего газа в керосин

Очевидно, что повышенное содержание химически более активной газовой добавки в двухфазном горючем улучшает его детонационную способность. Это и наблюдалось экспериментально. Зона горения за фронтом детонационных волн (высота фронта h) для двухфазного горючего TC-1/H₂ при $m_g \approx 42$ % меньше, чем для составов с меньшим содержанием водорода ($m_g \approx 21$ и 9 %), а количество волн — больше. Минимальное массовое содержание водорода в двухфазном горючем TC-1/H₂, при котором была реализована HCД, составляло $m_q = 8.4$ %.

При добавке синтез-газа к жидкому керосину установлено, что в ДК-500 детонационный режим запускался только в случае синтезгаза состава CO + $3H_2$ при $m_q > 47$ % и реализовывался режим непрерывной многофронтовой детонации с двумя встречными ПДВ. При $m_q < 43$ % в ДК-500 наблюдали режим горения с неполным выгоранием смеси. Однако при докритическом истечении продуктов из КС в нее входят возмущения из внешней среды и возбуждают режим непрерывной многофронтовой детонации с встречными ПДВ при $m_a =$ $43 \rightarrow 37$ %. При $m_g < 37$ % в КС опять существует обычное горение. То есть эксперименты с добавкой синтез-газа состава CO + 3H₂ в жидкий керосин показывают, что нижний детонационный предел по массовой доле синтез-

Таблица 2

газа находится в диапазоне $m_g \approx 37 \div 43$ %, а при пересчете по содержанию чистого водорода в двухфазном горючем — в диапазоне $m_{g,H} = 7.4 \div 7.6$ %. Заметим, что этот диапазон $m_{g,H}$ коррелирует с нижним пределом для двухфазного горючего TC-1/H₂ (см. выше). Поэтому можно утверждать, что реализации HCД способствует только водород, а оксид углерода не является промотирующей добавкой к керосину, стимулирующей химическую реакцию за детонационной волной. В смеси CO + H₂ содержание водорода составляло $m_g < 3$ %, поэтому отсутствие детонации в КС вполне закономерно.

Итак, для реализации НСД применение барботирования жидкого керосина газообразным водородом позволило уменьшить массовую долю водорода в двухфазном горючем до 8.4 %, а барботирование керосина синтез-газом состава CO + 3H₂ — до 48 %.

3.2. Полное давление продуктов на выходе из КС

В экспериментах измерялось полное давление продуктов p_{c30} на выходе из КС, являющееся важной интегральной характеристикой процесса сжигания ТВС. Обобщающие зависимости полного давления p_{c30} от удельного расхода смеси g_{Σ} в ДК-500 ($K_S = 5$) для исследованных составов TC-1/H₂ — воздух и TC-1/(CO + 3H₂) — воздух приведены на рис. 8. Видно, что при непрерывной детонации (точки 1-4) с увеличением q_{Σ} рост полного давления в КС зависит от состава двухфазного горючего. Причем при фиксированном расходе g_{Σ} с ростом массовой доли водорода в смеси (точки 1-3) значение полного давления растет и достигает при $m_q \approx 40~\%$ и $g_\Sigma \approx$ 515 кг/(с · м²) величины $p_{c30} = 5.9 \cdot 10^5$ Па. Кроме того, при непрерывной многофронтовой детонации двухфазного горючего TC-1/(CO + $3H_2$) значения p_{c30} (точки 4) на $30 \div 70$ % больше, чем при горении (точки 5). Последнее означает, что в ДК-500 энерговыделение при горении исследуемого двухфазного горючего существенно меньше, чем при непрерывной детонации. Измеренные значения $p_{\rm C30}$ на выходе из ДК-500 при сжигании смесей TC-1/H₂ — воздух и TC-1/(CO + $3H_2$) — воздух позволяют оценить удельные импульсы при непрерывной детонации.

Рис. 8. Зависимости полного давления продуктов на выходе из КС от удельного расхода гетерогенной ТВС с двухфазным горючим:

 $a - {\rm TC-1/H_2} : 1 - m_g \approx 42$ %, 2 - 21 %, 3 - 9 %; $\delta - {\rm TC-1/(CO + 3H_2)} : 4 - m_g \approx 47 \div 54$ %, $5 - 37 \div 43$ %

3.3. Удельные импульсы при непрерывной детонации

Определим зависимости удельных импульсов в камере ДК-500 при НСД смесей жидкий керосин — воздух от величины газовой добавки. Сила тяги определяется формулой [11, 12]:

$$F = \int_{S} [p + \rho v^2 - p_a] dS = (K p_{c30} - p_a) S_{\Delta}, \quad (1)$$

где ρ — плотность, v — скорость, p_a — противодавление, dS — площадь элементарной трубки тока, $K = (1+\gamma M^2)/(1+(\gamma-1)M^2/2)^{\gamma/(\gamma-1)}$, М — число Маха, γ — показатель политропы продуктов ($\gamma \approx 1.25$). Измеряя давление торможения p_{c30} и статическое давление p_{c3} на выходе из КС, можно из соотношения $p_{c30}/p_{c3} = (1+(\gamma-1)M^2/2)^{\gamma/(\gamma-1)}$ оценить число Маха, а по формуле (1) определить силу тяги F и удельный импульс относительно расхода горючего: $I_{sp,f} = F/(G_{ker} + G_g)/g$, где g — ускорение свободного падения.

На рис. 9 для смесей керосин — воздух с добавкой H₂ (кривые 1–3) и смеси H₂ — воздух (кривая 4) представлены зависимости удельного импульса относительно расхода горючего

Рис. 9. Зависимости удельного импульса при непрерывной детонации смесей керосин/ H_2 — воздух от удельного расхода смеси: 1 — $m_q \approx 42$ %, 2 — 21 %, 3 — 9 %, 4 — 100 %

 $I_{sp,f}$ при НСД от удельного расхода смеси g_{Σ} . Видно, что для всех составов смесей с увеличением параметра g_{Σ} удельный импульс $I_{sp,f}$ растет. Максимальное его значение для гетерогенной смес
и $I_{s \underline{p}, f} \approx 4\,000$ с получено при $g_{\Sigma} \approx 425 \text{ кг/(с \cdot м^2)}$ и $m_{\rm H} \approx 42 \%$. При фиксированных расходах g_{Σ} с уменьшением доли H₂ в составе двухфазного горючего (кривые 1– 3) значения $I_{sp,f}$ монотонно убывают. Так, при $g_{\Sigma} \approx 425 \ \mathrm{kr}/(\mathrm{c} \cdot \mathrm{m}^2)$ с уменьшением параметра *m*_H до 21 и 9 % значения удельного импульса уменьшаются до $I_{sp,f}\approx 2\,000$ и 1000с соответственно. Наибольшие значения $I_{sp,f}$ реализуются на чистом водороде ($m_{\rm H} = 100$ %). При $q_{\Sigma} > 400~{
m kr}/({
m c}\cdot{
m m}^2)$ его значения близки к реализуемым в данном эксперименте значениям для $m_{\rm H} \approx 42$ %.

3.4. Оценка минимального диаметра КС

Полученные экспериментальные данные о режимах НСД в ДК-500 ($K_S = 5.0$) для двухфазных смесей керосин — воздух с добавкой газообразного водорода позволяют оценить минимальный диаметр КС $d_{c,\min}$, который зависит от удельного расхода g_{Σ} и состава ТВС. Такая зависимость для исследованных смесей TC-1/H₂ — воздух приведена на рис. 10.

Горизонтально расположенные значения с одинаковыми символами 1–3 соответствуют одинаковому количеству ПДВ по окружности КС в данном диапазоне удельных расходов ТВС g_{Σ} , а скачки между ними — смене количества волн. Верхняя линия соответствует

Рис. 10. Зависимости минимального диаметра камеры сгорания, в которой может существовать одна ПДВ в двухфазной смеси керосин — воздух с добавкой водорода, от удельного расхода гетерогенной ТВС:

 $\begin{array}{l} 1-m_g\approx 42~\%,~2-21~\%,~3-9~\%,~4-100~\%,\\ 5-30\div 37~\%~[7] \end{array}$

одной, следующая — двум волнам и т. д. Деление диаметра окружности камеры d_c на число волн определяет минимальный диаметр камеры $d_{c,\min}$ в данном диапазоне g_{Σ} . Видно, что увеличение g_{Σ} приводит к уменьшению $d_{c,\min}$, необходимого для реализации одноволновой НСД.

Для смесей TC-1/H₂ — воздух ($m_q \approx$ 42 %, точки 1) оценка минимального диаметра КС при $g_{\Sigma} > 320~{
m kr}/({
m c}\cdot{
m m}^2)$ дает значения $d_{c,\min} \leqslant 250$ мм, при $g_{\Sigma} > 390$ кг/(с · м²) $d_{c,\min} \leqslant 168$ мм, при $g_{\Sigma} > 470$ кг/(с·м²) $d_{c,\min} \leqslant$ 126 мм, а при $g_{\Sigma} > 540~{\rm kr/(c \cdot m^2)}$ минимальный диаметр $\breve{\mathrm{KC}}$ составляет $d_{c,\min} \leqslant$ 100 мм. Для $m_g \approx 21~\%$ (точки 2) при g_Σ > 412 кг/(с · м²) получаем $d_{c,\min} \leqslant 250$ мм, а при $g_{\Sigma} > 480 \text{ кг}/(\text{c} \cdot \text{m}^2)$ минимальный диаметр КС $d_{c,\min} \leqslant 168$ мм. Для $m_g \approx 9$ % (точки 3) оценка минимального диаметра КС при $g_{\Sigma} > 430 \ {
m kr}/({
m c} \cdot {
m m}^2)$ дает $d_{c,{
m min}} \leqslant 250$ мм, а при $g_{\Sigma} > 550 \text{ кг}/(\text{c} \cdot \text{m}^2) - d_{c,\min} \leq 168 \text{ мм. Ha}$ рис. 10 также приведены минимальные диаметры КС d_{c.min} для газовой смеси H₂ — воздух (кривая 4). Видно, что при одинаковых расходах g_{Σ} значения $d_{c,\min}$ для химически активной смеси H_2 — воздух в несколько раз меньше, чем для исследованных составов двухфазных смесей TC-1/H₂ — воздух (кривые 1–3). Причем кривая 4 является огибающей снизу всех возможных диаметров КС, в которых могут быть реализованы режимы HCД в смесях TC-1/H₂ — воздух.

На рис. 10 для сравнения приведены данные работы [7] (точки 5), в которой утверждается, что режим НСД в смеси керосин/водород — воздух ($m_g \approx 30 \div 37$ %) в КС диаметром $d_c = 168$ мм был реализован при $g_{\Sigma} \approx 50$ кг/(с·м²), что на порядок меньше, чем в описанных выше экспериментах для гетерогенной смеси TC-1/H₂ — воздух, и в два раза меньше, чем для газовой смеси водород — воздух.

выводы

Таким образом, в ДК-500 впервые реализован режим НСД гетерогенной смеси жидкий авиационный керосин — воздух с добавкой газообразного горючего водорода или синтез-газа. Без добавки газообразного горючего режим НСД не был получен. Применение способа барботирования жидкого керосина газообразным водородом позволило уменьшить массовую долю водорода в двухфазном горючем до 8.4 %, т. е. более чем в три раза по сравнению с [7]. Структура ПДВ в исследованной гетерогенной ТВС подобна наблюдавшимся в смеси синтезгаз — воздух [3].

По измерениям полного и статического давления на выходе из ДК-500 определены удельные импульсы при непрерывной детонации в зависимости от состава двухфазного горючего TC-1/H₂. Максимальное значение удельного импульса составило 4 000 с при $g_{\Sigma} \approx 425 \text{ кг/}(\text{с} \cdot \text{m}^2)$ и массовой доле водорода в двухфазном горючем 42 %.

Установлено, что при $\phi_{\Sigma} = \phi_{ker} + \phi_g \approx 1$, $m_{\rm H} \approx 9 \%$ и $g_{\Sigma} > 500$ кг/(с·м²) критический диаметр НСД гетерогенной смеси керосин/водород — воздух можно уменьшить до $d_{cr} = 250$ мм, а при $\phi_{\Sigma} \approx 1$, $m_{\rm H} \approx 21 \%$ и $g_{\Sigma} > 550 \text{ кг/(c \cdot m^2)}$ — до $d_{cr} = 168 \text{ мм. Удель$ ные расходы смеси, при которых были получены режимы НСД в смеси керосин/водород воздух, на порядок больше, чем в [7].

ЛИТЕРАТУРА

- 1. Войцеховский Б. В. Стационарная детонация // Докл. АН СССР. — 1959. — Т. 129, № 6. — С. 1254–1256.
- Быковский Ф. А., Ждан С. А. Непрерывная спиновая детонация. Новосибирск: Издво СО РАН, 2013.
- Быковский Ф. А., Ждан С. А. Современное состояние исследований непрерывной детонации топливовоздушных смесей (обзор) // Физика горения и взрыва. 2015. Т. 51, № 1. С. 31–46.
- Быковский Ф. А., Ждан С. А., Ведерников Е. Ф. Непрерывная детонация смесей метан/водород — воздух в кольцевой цилиндрической камере // Физика горения и взрыва. — 2018. — Т. 54, № 4. — С. 96–106.
- 5. Быковский Ф. А., Митрофанов В. В., Ведерников Е. Ф. Непрерывное детонационное сжигание топливно-воздушных смесей // Физика горения и взрыва. — 1997. — Т. 33, № 3. — С. 120–131.
- Быковский Ф. А., Ждан С. А., Ведерников Е. Ф. Непрерывная спиновая детонация топливно-воздушных смесей // Физика горения и взрыва. — 2006. — Т. 42, № 4. — С. 107–115.
- Kindracki J. Experimental research on rotating detonation in liquid fuel-gaseous air mixtures // Aerospace Sci. Technol. — 2015. — V. 43. — P. 445–453.
- Быковский Ф. А., Ждан С. А., Ведерников Е. Ф. Непрерывная спиновая детонация гетерогенной смеси керосин — воздух с добавкой водорода // Физика горения и взрыва. — 2016. — Т. 52, № 3. — С. 128–130.
- Льюис Б., Эльбе Г. Горение, пламя и взрывы в газах. — М.: Мир, 1968.
- Козюков Е. А., Крылова А. Ю., Крылов М. В. Химическая переработка природного газа. — М.: Изд-во МАИ, 2006.
- Зуев В. С., Макарон В. С. Теория прямоточных и ракетно-прямоточных двигателей. — М.: Машиностроение, 1971.
- 12. Абрамович Г. Н. Прикладная газовая динамика. — М.: Наука, 1976.

Поступила в редакцию 18.05.2018. После доработки 13.07.2018. Принята к публикации 12.09.2018.