УДК 532.54

КОНЦЕНТРАЦИОННАЯ КОНВЕКЦИЯ КОЛЛОИДНОГО РАСТВОРА В ШАРОВОЙ ПОЛОСТИ

П. В. Краузин, М. Т. Краузина

Пермский государственный национальный исследовательский университет, 614990 Пермь, Россия E-mails: krauzin@gmail.com, krauzina@psu.ru

Численно решена задача о возникающей вследствие седиментации концентрационной конвекции в шаровой полости. Показано, что течение формируется вследствие неоднородности концентрации вблизи поверхности и имеет вид двух торов, конвекция приводит к ускорению разделения смеси.

Ключевые слова: коллоидный раствор, шаровая полость, распределение концентрации.

DOI: 10.15372/PMTF20210214

Введение. Коллоидные растворы (наножидкости) в последнее время широко применяются, например, при охлаждении электронных компонентов микросхем, двигателей транспортных средств, ядерных реакторов и т. д. [1–4]. При создании теплообменных устройств необходимо учитывать влияние на конвективный теплоперенос в коллоидах дополнительных механизмов переноса вещества, таких как диффузия, термодиффузия, гравитационная седиментация частиц [2, 5, 6]. Заметим, что в коллоидных растворах коэффициент термодиффузии на несколько порядков больше [7], чем в бинарных смесях, и имеется седиментация.

Интерес к исследованию перечисленных механизмов переноса при использовании коллоидных растворов обусловлен в первую очередь тем, что возникающее под действием приложенного градиента температуры или силы тяжести расслоение меняет характер теплообмена. Как показали результаты экспериментов [8–12], взаимодействие механизмов тепломассопереноса приводит к сложной пространственно-временной динамике, в том числе к спонтанному затуханию и последующему самовозбуждению течения. Кроме того, возникновение градиента концентрации приводит к изменению таких параметров жидкости, как вязкость и теплопроводность [1–4, 13, 14].

Известно, что вследствие гравитационной седиментации частиц в поле силы тяжести даже в изотермическом случае в коллоидных растворах могут возникать существенные концентрационные неоднородности [15–18]. Влияние седиментации на конвективные течения изучалось в [15–17]. В экспериментальной работе [15] обнаружено, что вследствие седиментации возникают градиенты плотности, приводящие к концентрационной конвекции. При этом время образования неоднородностей концентрации, влияющих на конвективные

Работа выполнена при финансовой поддержке фонда "Норпексаль фонд".

[©] Краузин П. В., Краузина М. Т., 2021

процессы, на три порядка меньше характерного диффузионного времени [15]. Таким образом, при изучении конвективных течений коллоидов необходимо учитывать перепады плотности, возникающие вследствие гравитационного осаждения частиц.

В настоящей работе исследуется эволюция перераспределения концентрации изотермического коллоидного раствора в шаровой полости с учетом гравитационной седиментации частиц. Известно, что при наличии наклонных боковых границ образуются неоднородности концентрации и возникает макроскопическое течение коллоида [19–21]. Однако это явление в существенной мере зависит от формы контейнера, заполненного коллоидным раствором, и для случая шаровой полости изучено недостаточно. Вместе с тем в ряде работ (см., например, [22]) используется подход, при котором концентрационной конвекцией в коллоидах пренебрегается.

Целью настоящей работы является исследование установления равновесного состояния коллоидного раствора с постоянной температурой в шаровой полости в двух постановках: с учетом и без учета конвективного переноса частиц.

1. Постановка задачи. Рассмотрим шаровую полость радиусом *R*, заполненную коллоидным раствором. Введем сферическую систему координат: начало координат совместим с центром полости, полярную ось направим вертикально вверх.

Равновесное распределение объемной концентрации частиц φ слабого коллоидного раствора в шаровой полости в поле силы тяжести описывается барометрическим распределением

$$\varphi = \frac{\varphi_0 \mathrm{e}^{-z/l}}{3((R/l)\operatorname{ch}(R/l) - \operatorname{sh}(R/l))} \left(\frac{R}{l}\right)^3,$$

где φ_0 — средняя объемная концентрация частиц; $l = k_{\rm B}T/(m_*g)$ — длина участка седиментации (высота, на которой концентрация примеси изменяется в e раз); $k_{\rm B}$ — постоянная Больцмана; T — температура; $m_* = v_p(\rho_p - \rho_s)$; v_p — объем частицы; ρ_p , ρ_s — плотности частиц и дисперсионной жидкости соответственно.

Система уравнений, описывающая концентрационную конвекцию несжимаемого коллоидного раствора, имеет вид

$$\rho\left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v}\right) = -\nabla p + \eta \Delta \boldsymbol{v} + \rho \boldsymbol{g}, \qquad \nabla \cdot \boldsymbol{v} = 0,$$
$$\frac{\partial \varphi}{\partial t} + \boldsymbol{v} \cdot \nabla \varphi = D \Delta \varphi + \frac{D}{l} \boldsymbol{e}_{z} \cdot \nabla \varphi.$$

Здесь ρ — плотность коллоида; v — скорость течения; p — давление; η — динамическая вязкость; D — коэффициент диффузии; $e_z = -g/g$ — орт вертикальной оси z. В рассматриваемой модели полагается, что коэффициент вязкости не зависит от концентрации. Такое приближение используется, например, в [19].

В начальный момент времени коллоидный раствор считается однородным и неподвижным:

$$t = 0$$
: $\boldsymbol{v} = 0$, $\boldsymbol{\varphi} = \varphi_0$.

На границах полости ставятся условия прилипания для скорости и исчезновения радиальной составляющей потока концентрации:

$$r = R$$
: $\boldsymbol{v} = 0$, $(\nabla \varphi + l^{-1} \varphi \boldsymbol{e}_z) \cdot \boldsymbol{e}_r = 0$

 $(e_r - e$ диничный вектор нормали к поверхности).

Допустим, что плотность линейно зависит от концентрации:

$$\rho = \rho_p \varphi + \rho_s (1 - \varphi) = \rho_0 (1 + \beta_\varphi (\varphi - \varphi_0))$$

 $(\rho_0 = \rho_p \varphi_0 + \rho_s (1 - \varphi_0)$ — плотность при средней концентрации; $\beta_{\varphi} = (\rho_p - \rho_s)/\rho_0$ — коэффициент концентрационного расширения, рассчитанный по объемной концентрации).

$N \cdot 10^{-3}$	$\langle \varphi angle$
1,1	$3,0 \cdot 10^{-3}$
1,7	$1,6\cdot 10^{-3}$
3,0	$7,9\cdot 10^{-4}$
7,0	$3,8\cdot 10^{-4}$
17,0	$1,6 \cdot 10^{-4}$

Погрешность осредненной по объему концентрации для сеток с различным количеством элементов при $t=3\cdot 10^4$

Запишем уравнение Навье — Стокса в приближении Буссинеска:

$$\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} = -\frac{1}{\rho_0} \nabla p + \nu \, \Delta \boldsymbol{v} + \beta_{\varphi} \varphi \, \boldsymbol{g},$$

где p — конвективное давление (давление, отсчитываемое от гидростатического, соответствующего средней концентрации); ν — кинематическая вязкость; φ — объемная концентрация, отсчитываемая от среднего значения.

Обезразмерим уравнения, выбрав в качестве характерной величины расстояния радиус шаровой полости R, времени — R^2/ν , плотности — ρ_0 , концентрации — φ_0 . Получаем систему уравнений

$$\begin{aligned} \frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} &= -\nabla p + \Delta \boldsymbol{v} - \operatorname{Gr}_d \varphi \, \boldsymbol{e}_z, \qquad \nabla \cdot \boldsymbol{v} = 0, \\ \frac{\partial \varphi}{\partial t} + \boldsymbol{v} \cdot \nabla \varphi &= \frac{1}{\operatorname{Sc}} \left(\Delta \varphi + \frac{1}{\lambda} \, \boldsymbol{e}_z \cdot \nabla \varphi \right), \end{aligned}$$

где $Gr_d = g\beta\varphi_0 R^3/\nu^2$ — диффузионное число Грасгофа; $Sc = \nu/D$ — число Шмидта (диффузионное число Прандтля). При этом в задаче возникает безразмерный параметр $\lambda = l/R$, представляющий собой безразмерную седиментационную длину, отношение характерных времен — седиментационного к диффузионному, безразмерную стоксову скорость осаждения частиц, отношение тепловой и потенциальной энергий. Начальные и граничные условия представим в безразмерном виде

$$t = 0; \quad \boldsymbol{v} = 0, \quad \varphi = 0,$$

$$r = 1; \quad \boldsymbol{v} = 0, \quad \left(\nabla \varphi + \frac{\varphi + 1}{\lambda} \boldsymbol{e}_z\right) \cdot \boldsymbol{e}_r = 0$$

Задача решалась численно методом конечных элементов с помощью решателя, интегрированного в вычислительный пакет COMSOL Multiphysics 5.3 [23]. Использовалась неструктурированная сетка, общее число элементов составляло $N = 7 \cdot 10^3$. Сходимость метода определялась по осредненной по объему концентрации $\langle \varphi \rangle$ в момент времени $t = 3 \cdot 10^4$ (см. таблицу). Данная величина, точное значение которой равно нулю (вследствие сохранения числа частиц), характеризует погрешность вычислений при больших значениях диффузионного времени ($t \sim Sc$).

В расчетах использовались параметры коллоида Ludox[®] ТМА при температуре, равной 30 °C: радиус частиц $a = 16 \cdot 10^{-9}$ м, коэффициент концентрационного расширения, рассчитанный по массовой концентрации, $\beta_c = 0.57$, $\rho_s = 10^3$ кг/м³, $\rho_p = 2.1 \cdot 10^3$ кг/м³, $\nu = 8.18 \cdot 10^{-7}$ м²/с, $D = 2.20 \cdot 10^{-11}$ м²/с, $l = 2.2 \cdot 10^{-2}$ м, $\varphi_0 = 0.080$, $\rho_0 = 1.1 \cdot 10^3$ кг/м³, $\beta_{\varphi} = 1.0$. Коэффициенты β_c , β_{φ} связаны следующим образом:

$$\beta_{\varphi} = \beta_c \, \frac{\rho_p \rho_s}{\rho_0}.$$

Рис. 1. Область применимости приближения Буссинеска для коллоидного раствора Ludox[®] TMA

Расчеты проводились при значении $R = 8 \cdot 10^{-3}$ м, соответствующем экспериментальной установке, использовавшейся в работе [8] при исследовании термогравитационной конвекции ферроколлоидов. В этом случае безразмерные параметры имеют следующие значения: $Gr_d = 6.1 \cdot 10^5$, $Sc = 3.7 \cdot 10^4$, $\lambda = 2.8$.

Определим область, удовлетворяющую приближению Буссинеска, на плоскости параметров (φ_0, λ). Условие малой неоднородности плотности вследствие перераспределения частиц имеет вид

$$\beta_{\varphi}(\varphi - \varphi_0) \ll 1. \tag{1}$$

Граница искомой области определяется уравнением

$$\beta_{\varphi}(\varphi_{\max} - \varphi_0) = \varepsilon,$$

где φ_{\max} — максимальное значение концентрации при равновесном распределении, достигаемое на "дне" шаровой полости (z = -R):

$$\varphi_{\max} = \frac{\varphi_0 e^{1/\lambda}}{3\lambda^3 (\operatorname{ch}\left(1/\lambda\right)/\lambda - \operatorname{sh}\left(1/\lambda\right))}$$

Полагается, что при $\varepsilon = 0,1$ неравенство (1) еще выполняется.

Определим парамет
рkкак относительную разность плотностей частиц и дисперсионной жидкости

$$k = (\rho_p - \rho_s)/\rho_s,$$

тогда уравнение границы области применимости приближения Буссинеска принимает вид

$$\varphi_0 = \frac{1}{k} \left[\frac{1}{\varepsilon} \left(\frac{\mathrm{e}^{1/\lambda}}{3\lambda^3 (\mathrm{ch}\left(1/\lambda\right)/\lambda - \mathrm{sh}\left(1/\lambda\right))} - 1 \right) - 1 \right]^{-1}.$$

На рис. 1 показана найденная область для коллоидного раствора Ludox[®] TMA (k = 1,1). Видно, что для объемной концентрации частиц $\varphi_0 = 0,080$ приближение Буссинеска выполняется при $\lambda > 1,1$.

2. Результаты исследования и их обсуждение. Известно, что первой моде неустойчивости тепловой конвекции в шаровой полости соответствует один конвективный вал [24]. Однако при трехмерном моделировании получено, что течение при наличии концентрационной конвекции имеет вид двух торов (рис. 2). Дальнейшие расчеты проводились в осесимметричной постановке.

Рис. 2. Структура течения

Рис. 3. Распределения скорости и концентрации в различные моменты времени: $a - t = 3, \ b - t = 6, \ b - t = 15$

Нормальная составляющая седиментационного потока на границе шаровой полости (за исключением экваториальной линии) не равна нулю. При этом в силу условия непроницаемости границ нормальная компонента полного потока должна отсутствовать. Наличие этой компоненты седиментационного потока компенсируется с помощью нормальной составляющей диффузионного потока, обусловленной соответствующим градиентом концентрации. Вследствие этого в горизонтальном направлении, по крайней мере в окрестности границ, возникает неоднородность плотности. Это свидетельствует о нарушении необходимого условия механического равновесия, т. е. о возникновении концентрационной конвекции.

На рис. 3 показана эволюция конвективного течения для значений времени t = 3, 6, 15. В начальные моменты времени изолинии концентрации значительно искривлены, повторяя форму сферической поверхности. При этом в объеме раствор остается практически однородным, а на границах в верхней и нижней частях полости концентрация частиц уменьшается и увеличивается соответственно вследствие наличия тангенциальной составляющей седиментационного потока. Это приводит к формированию концентрационного течения (см. рис. 3, a), интенсивность которого затем увеличивается (см. рис. 3, 6). Далее конвективное течение затухает (см. рис. 3, 6) в центральной части полости, вместе с тем

Рис. 4. Зависимость осредненного модуля скорости течения от времени

Рис. 5. Поля и изолинии концентрации в отсутствие (a, e, d) и при наличии (6, e, e) конвекции в различные моменты времени: a, 6 - t = 10, e, e - t = 100, d, e - t = 1000

изолинии концентрации становятся горизонтальными. Дальнейшее установление равновесного распределения концентрации происходит в отсутствие макроскопического движения раствора.

Зависимость осредненного модуля скорости от времени приведена на рис. 4. Характерное время затухания конвекции, в течение которого интенсивность течения уменьшается в *e* раз, равно *t* = 30. Такая зависимость характерна для концентрационной конвекции в замкнутых полостях. Например, в работе [19] аналогичное изменение интенсивности конвекции получено для сосуда с одной наклонной стенкой.

Для изучения влияния концентрационной конвекции на установление барометрического распределения проведено сравнение случаев наличия и отсутствия (v = 0) конвекции. На рис. 5 показаны изолинии и поля концентрации при учете и без учета движения коллоида в моменты времени t = 10, 100, 1000. Видно, что в этих случаях эволюция системы происходит различным образом. Наличие конвекции приводит к однородности концентрации в горизонтальном направлении. Кроме того, скорость конвективного переноса превышает скорости диффузионного и седиментационного переноса, поэтому за время $t \approx 1$ изолинии концентрации становятся практически горизонтальными всюду, за исключением окрестности границ полости. Можно предположить, что эволюция поля концентрации в замкнутых полостях произвольной геометрии аналогична. Случай отсутствия конвективного движения характеризуется "памятью" формы изолиний концентрации, которые становятся горизонтальными за время $t \approx Sc.$

Для того чтобы определить разность τ времен установления равновесного состояния коллоида при наличии и в отсутствие конвекции, построены кривые осредненного по объему полости модуля отклонения концентрации от барометрического распределения $\langle |\varphi - \varphi_{\infty}| \rangle$ (рис. 6). В соответствии с правилом двух сигм величина τ вычислялась как разность времен при $\langle |\varphi - \varphi_{\infty}| \rangle = 5 \%$. Из рис. 6 следует, что при наличии концентрационной конвекции расслоение смеси происходит в 1,05 раза быстрее, чем в ее отсутствие, что соответствует значению $\tau = 0.4 \cdot 10^3$.

На рис. 7 представлена зависимость времени τ установления равновесия вследствие концентрационной конвекции от радиуса полости. При этом число Шмидта остается фик-

Рис. 6. Зависимость от времени осредненного по объему модуля отклонения концентрации от барометрического распределения при наличии (1) и в отсутствие (2) конвекции

Рис. 7. Зависимость времени установления равновесия вследствие концентрационной конвекции от радиуса полости сированным, а число Грасгофа и безразмерная седиментационная длина изменяются в соответствии с выражениями $\lambda \sim R^{-1}, \, {\rm Gr}_d \sim R^3.$ Влияние конвективного механизма переноса в наибольшей степени проявляется при увеличении размера полости. Это обусловлено увеличивающейся стратификацией коллоидного раствора, при которой градиенты концентрации вызывают макроскопическое движение большей интенсивности.

Заключение. В работе проведено численное моделирование, результаты которого показали, что в шаровой полости, заполненной однородным в начальный момент времени коллоидным раствором, возникает концентрационная конвекция, способствующая ускорению процесса гравитационного разделения смеси. Однако течение, охватывающее весь объем полости, существует на малых гидродинамических временах и оказывает незначительное влияние на время установления барометрического распределения. При этом картины изолиний концентрации с учетом и без учета конвекции существенно различаются. Временной лаг установления равновесия за счет концентрационной конвекции максимален на границе области применимости приближения Буссинеска и достигает 7 %.

ЛИТЕРАТУРА

- Choi S. U. S. Nanofluids: From vision to reality through research // J. Heat Transfer. 2009. V. 131, iss. 3. 033106.
- 2. Devendiran D. K., Amirtham V. A. A review on preparation, characterization, properties and applications of nanofluids // Renewable Sustainable Energy Rev. 2016. V. 60. P. 21–40.
- Saidur R., Leong K. Y., Mohammad H. A. A review on applications and challenges of nanofluids // Renewable Sustainable Energy Rev. 2011. V. 15, iss. 3. P. 1646–1668.
- Raja M., Vijayan R., Dineshkumar P., Venkatesan M. Review on nanofluids characterization, heat transfer characteristics and applications // Renewable Sustainable Energy Rev. 2016. V. 64. P. 163–173.
- Pshenichnikov A. F., Elfimova E. A., Ivanov A. O. Magnetophoresis, sedimentation, and diffusion of particles in concentrated magnetic fluids // J. Chem. Phys. 2011. V. 134, iss. 18. 184508.
- Smorodin B. L., Cherepanov I. N., Myznikova B. I., Shliomis M. I. Traveling-wave convection in colloids stratified by gravity // Phys. Rev. E. 2011. V. 84. 026305.
- Sprenger L., Lange A., Odenbach S. Thermodiffusion in concentrated ferrofluids: A review and current experimental and numerical results on non-magnetic thermodiffusion // Phys. Fluids. 2013. V. 25, iss. 12. 122002.
- Krauzina M. T., Bozhko A. A., Putin G. F., Suslov S. A. Intermittent flow regimes near the convection threshold in ferromagnetic nanofluids // Phys. Rev. E. 2015. V. 91, N 1. 013010.
- Krauzina M. T., Bozhko A. A., Krauzin P. V., Suslov S. A. Oscillatory instability of convection in ferromagnetic nanofluid and in transformer oil // Fluid Dynamics. Res. 2016. V. 48, iss. 6. 061407.
- Bozhko A. A., Putin G. F. Heat transfer and flow patterns in ferrofluid convection // Magnetohydrodynamics. 2003. V. 39, N 2. P. 147–168.
- 11. Bozhko A. A. Onset of convection in magnetic fluids // Phys. Proc. 2010. V. 9. P. 176–180.
- Глухов А. Ф., Путин Г. Ф. Конвекция магнитных жидкостей в связанных каналах при подогреве снизу // Изв. РАН. Механика жидкости и газа. 2010. № 5. С. 41–48.
- 13. Bashirnezhad K., Bazri S., Safaei M. R., et al. Viscosity of nanofluids: A review of recent experimental studies // Intern. Comm. Heat Mass Transfer. 2016. V. 73. P. 114–123.
- Wang X.-Q., Mujumdar A. S. Heat transfer characteristics of nanofluids: a review // Intern. J. Thermal Sci. 2007. V. 46, iss. 1. P. 1–19.

- Глухов А. Ф., Путин Г. Ф. Установление равновесного барометрического распределения частиц в магнитной жидкости // Гидродинамика. 1999. Вып. 12. С. 92–103.
- Райхер Ю. Л., Шлиомис М. И. Кинетика установления равновесного распределения концентрации в магнитной жидкости // Приборы и методы измерения физических параметров ферроколлоидов. Свердловск: Изд-во УрО АН СССР, 1991. С. 27–32.
- Elfimova E. A., Ivanov A. O., Lakhtina E. V., et al. Sedimentation equilibria in polydisperse ferrofluids: critical comparisons between experiment, theory, and computer simulation // Soft Matter. 2016. V. 12, iss. 18. P. 4103–4112.
- Bozhko A. A., Putin G. F., Sidorov A. S., Suslov S. A. Convection in a vertical layer of stratified magnetic fluid // Magnetohydrodynamics. 2013. V. 49, N 1. P. 143–152.
- 19. Черепанов И. Н., Смородин Б. Л. Перенос примеси наночастиц в сосуде с наклонными боковыми границами // Вестн. Перм. ун-та. Физика. 2018. № 1. С. 81–88.
- Page M. A. Combined diffusion-driven and convective flow in a tilted square container // Phys. Fluids. 2011. V. 23, iss. 5. 056602.
- Невский Ю. А. Гравитационная конвекция дисперсных систем в сосудах с наклонными стенками // Вестн. Нижегор. ун-та им. Н. И. Лобачевского. Механика жидкости и газа. 2011. № 4. С. 1012–1014.
- Pshenichnikov A. F., Burkova E. N. Effect of demagnetizing fields on particle spatial distribution in magnetic fluids // Magnetohydrodynamics. 2012. V. 48, N 3. P. 243–253.
- 23. COMSOL multiphysics reference manual, version 5.3. Burlington: COMSOL Inc, 2017. [Электрон. pecypc]. Режим доступа: www.comsol.com.
- Гершуни Г. З. Конвективная устойчивость несжимаемой жидкости / Γ. З. Гершуни, Е. М. Жуховицкий. М.: Наука, 1972.

Поступила в редакцию 4/III 2020 г., после доработки — 11/VII 2020 г. Принята к публикации 27/VII 2020 г.