ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ ПЕРЕДНЕГО ФРОНТА ЭЛЕКТРОПРОВОДНОЙ ЗОНЫ ВОЛНЫ ГОРЕНИЯ КОНДЕНСИРОВАННЫХ СИСТЕМ

В. Ф. Проскудин

РФЯЦ, ВНИИ экспериментальной физики, 607190 Саров

Рассмотрен метод экспериментальной оценки температуры переднего фронта электропроводной зоны волны горения неэлектропроводных конденсированных систем. Эксперименты с использованием системы $Zr + WO_3$ показали эффективность метода. Получено, что температура переднего фронта равна 2000 ÷ 2400 K при температуре горения системы на уровне ≈ 3000 K.

Процесс горения включает в себя сложный набор взаимовлияющих физических и химических явлений, в том числе и электрических [1]. Исследованию последних посвящено много работ, причем в большинстве из них помимо чисто научного [2, 3] просматривается еще и практический интерес: нахождение достаточно простого и эффективного способа управления процессом горения путем воздействия на горящую систему внешним электрическим полем [4–6]. Одно из важных направлений такого исследования — изучение электрических аспектов структуры волны горения.

Структура волны горения конденсированных систем изучена достаточно подробно. Известно, что температурный профиль фронта горения, движущегося в неподвижной системе со скоростью U, характеризуется резким изменением температуры от начальной T_0 до максимальной T_{max} в пределах довольно узкого слоя системы толщиной x_0 (рис. 1) [7, 8]. При этом по достижении определенной температуры T_* начинается быстрая химическая реакция, в результате которой в зоне фронта горения резко изменяются физико-химические параметры, включая и электропроводность [9].

Обычно конденсированные системы в исходном состоянии практически неэлектропроводны, в то время как электропроводность продуктов горения в момент их образования в волне химической реакции в большинстве случаев достаточно высока [9]. Переход из неэлектропроводного состояния в электропроводное происходит в определенных точках горящей системы, образующих единую поверхность, расположенную вдоль фронта горения и движущуюся вместе с этим фронтом со скоростью U. Причем пространственное положение этой поверхности — переднего фронта электропроводной зоны волны горения — будет соответствовать некоторой вполне определенной степени превращения исходных веществ в конечные продукты химической реакции. Поэтому на температурном профиле волны горения температура переднего фронта электропроводной зоны T_e должна находиться между T_* и T_{max} (см. рис. 1).

Знание величины T_e представляется весьма актуальным, например, при рассмотрении электрических аспектов горения, поскольку дает возможность более детально представить структуру волны горения. Использование обычной термопары для измерения T_e , например, путем фиксации момента резкого возрастания электропроводности горящей системы в точке расположения спая термопары требует преодоления ряда методических трудно-

Рис. 1. Температурный профиль волны горения конденсированной системы:

стрелкой показано направление движения фронта горения

В. Ф. Проскудин

стей [10], делая такой эксперимент достаточно сложным. Гораздо проще и удобнее для экспериментальной оценки Те воспользоваться особой термопарой. Она представляет собой два разнородных проводника (проволочки), соединенных с третьим, разогретым, проводником, температуру которого измеряют. В качестве третьего проводника могут выступать либо металлическая пластинка (как, например, в простейшем тепломере [11]), либо ионизированные продукты [12], либо, как в данном случае, передний фронт электропроводной зоны волны химической реакции горения. Для этого в образце из пиротехнического состава вдоль направления движения фронта горения необходимо разместить две разнородные термопарные проволочки. Тогда при горении образца образуется термопара, состоящая из этих проволочек, электрически соединенных друг с другом передним фронтом зоны электропроводности, движущимся вместе с волной горения (рис. 2). Измерительный прибор, присоединенный к клеммам, покажет значение термо-ЭДС, соответствующее температуре мест контакта проволочек с передним фронтом электропроводной зоны, играющим роль третьего проводника. В результате такого эксперимента, зная калибровочные данные о функциональной связи термоЭДС данной пары разнородных проволочек с температурой горячего спая термопары, можно получить значение T_e . При этом точное значение можно получить лишь в том идеальном случае, когда в местах контакта проволочек с передним фронтом зоны электропроводности одновременно реализуются и одинаковая температура T_e , и одинаковые физико-химические параметры (включая и вещественный состав) композиции, состоящей из реагирующих в волне горения веществ. Но изза неизбежных флуктуаций физико-химических параметров в волне горения это условие нельзя выполнить в полной мере. Появляется объективно обусловленная неточность измерения (ΔT_e) текущих значений T_e . В связи с этим целесообразность измерения T_e будет зависеть от соотношения получаемых в эксперименте значений ΔT_e и T_e . Если $\Delta T_e \ll T_e$, то предлагаемый метод измерения T_e вполне приемлем. Если же $\Delta T \approx T_e$, то измерение T_e теряет физический смысл, но сами результаты эксперимента могут оказаться весьма полезными в рамках анализа флуктуаций физико-химических параметров в волне горения.

Рис. 2. Схема образования термопары при горении образца из пиротехнического состава:

1 — сгоревшая часть образца; 2 — не сгоревшая часть образца; 3 — две разнородные термопарные проволочки; 4 — клеммы; 5 — места контакта проволочек с передним фронтом электропроводной зоны волны горения; 6 — передний фронт электропроводной зоны волны горения; стрелкой показано направление движения фронта горения

При этом следует иметь в виду, что в процессе горения системы на фоне флуктуаций физико-химических параметров в волне горения из-за их стохастического характера будут возникать и периодически повторяться ситуации, когда все параметры в местах контакта проволочек с передним фронтом электропроводной зоны волны горения окажутся одинаковыми или, по крайней мере, очень близкими между собой, что при достаточно большом времени горения системы обеспечит периодическое появление точно измеренных значений T_e среди множества текущих «неточно измеренных» значений. То есть в интервале значений термоЭДС от $\varepsilon_e - 0.5\Delta\varepsilon_e$ до $\varepsilon_e + 0.5\Delta\varepsilon_e$ (рис. 3) с большой долей вероятности будут находиться значения термоЭДС, отвечающие истинным значениям T_e , что дает возможность однозначно установить интервал температур, в котором находятся истинные значения Те. При этом относительная методическая ошибка δ , обуслов-

Рис. 3. Ожидаемый вид осциллограммы термоЭДС при измерениях по схеме рис. 2

Рис. 4. Схема лабораторной сборки:

1 — стакан; 2 и 3 — проволочки из вольфрамрениевых сплавов ВР 5 и ВР 20 соответственно; 4 — электроизоляционная колодка; 5 — клеммы; 6 — образец из смеси $Zr + WO_3$; 7 — сетка; 8 — вставка, содержащая электровоспламенитель; 9 — гайка

ленная неточностью измерения ΔT_e , в первом приближении может быть определена из соотношения

$$\delta = \pm 100 \Delta \varepsilon_e / 2\varepsilon_e \, [\%]. \tag{1}$$

Для экспериментов использовали стехиометрическую смесь порошков циркония (по ТУ 48-4-376-76) и вольфрамового ангидрида (по ТУ 48-19-35-79) [13]. Эту смесь запрессовывали в стальной корпус, содержащий две разнородные проволочки из вольфрамрениевых сплавов (ВР 5 и ВР 20), введенные внутрь стакана с помощью электроизоляционной колодки (рис. 4). При этом пуансон имел два сквозных канала, в которые при прессовании смеси Zr + WO₃ свободно проходили введенные в стакан проволочки. Выбор материала проволочек был обусловлен ожидаемым диапазоном измеряемых значений T_e — от $T_* \approx 10^3$ K [8] до $T_{\rm max} \approx (2 \div 3) \cdot 10^3$ K [10].

Образец из смеси Zr + WO₃ имел диаметр 25 мм, высоту 16 мм и относительную плотность 0,6. Находящиеся в образце вольфрамрениевые проволочки располагались параллельно продольной оси образца и симметрично ей на расстоянии 4 мм друг от друга. Расположение проволочек симметрично продольной оси образца продиктовано стремлением минимизировать влияние теплоотвода из зоны фронта горения в стенки лабораторной сборки на степень различия физико-химических параметров в местах контакта проволочек с движущимся передним фронтом электропроводной зоны волны горения.

Рис. 5. Осциллограмма изменения термоЭДС при горении образца из смеси Zr + WO₃:

 ε_e — термоЭДС, отвечающая температуре T_e , а ε_{\max} — отвечающая температуре T_{\max} ; τ — время горения образца

На открытый торец образца устанавливали стальную сетку с центральным отверстием и вставку, содержащую внутри соосно расположенный электровоспламенитель, с помощью которого зажигали образец. Для выхода примесных газов, выделяющихся при горении образца, в гайке предусмотрено специальное отверстие.

Электрическое напряжение, возникающее при горении образца между вольфрамрениевыми проволочками (термоЭДС), записывали с помощью как шлейфового осциллографа H-117 (частота собственных колебаний гальванометра 600 Гц), так и электронно-лучевого осциллографа C8-17.

Полученные экспериментальные результаты (рис. 5) показывают, что значения термо-ЭДС, непрерывно регистрируемые во время горения средней части образца, характеризуются нерегулярными колебаниями вокруг некоторого среднего значения $\varepsilon_e \approx 28$ мВ при размахе колебаний $\Delta \varepsilon_e \leqslant 5$ мВ. При этом в соответствии с соотношением (1) $\delta \approx \pm 10$ %, что для такого рода измерений вполне приемлемо.

Полученному диапазону измеренных значений термоЭДС вольфрамрениевой термопары ВР 5/20 отвечает интервал $T_e = 2000 \div 2400$ К (при $\Delta T_e \leqslant 400$ К). В то же время рассчитано, что для смеси Zr + WO₃ значение $T_{\rm max} \approx 3000$ К. Таким образом, температура переднего фронта электропроводной зоны волны горения этой смеси составляет $\approx 70\%$ от величины $T_{\rm max}$.

Следует отметить, что предлагаемый способ регистрации значения T_e позволяет одновременно оценивать для изучаемой системы и температуру горения T_{\max} путем регистрации термоЭДС в момент окончания горения образца, поскольку начиная с этого момента вольфрамрениевые проволочки будут находиться в контакте с продуктами горения, температура которых вначале близка (с учетом неизбежных теплопотерь в электроизоляционную колодку) к $T_{\rm max}$, а затем по мере остывания лабораторной сборки постепенно снижается.

Как показывают эксперименты (см. рис. 5), значение термоЭДС $\varepsilon_{\rm max}$, регистрируемое в конце горения образца из смеси Zr + WO₃, составляет ≈ 40 мB, что соответствует значению температуры ≈ 3000 K, хорошо согласующемуся с расчетным значением $T_{\rm max}$.

Безусловно, измерение температуры T_{max} таким способом существенно проигрывает по сравнению с традиционным термопарным способом [10] из-за больших теплопотерь и влияния флуктуаций физико-химических (в том числе и электрохимических [2]) параметров в уже образовавшихся и остывающих продуктах химической реакции горения. Тем не менее значение T_{max} , измеренное в качестве дополнительного параметра при целевом измерении значения T_e , может оказаться весьма полезным, например, для экспресс-анализа значений T_e и T_{max} для конкретной конденсированной системы, полученных в одном и том же эксперименте.

Автор выражает благодарность сотрудникам ВНИИ экспериментальной физики Е. Н. Беляеву, С. А. Другову, В. В. Мокрушину и А. Г. Лещинской за помощь в работе, а П. Г. Бережко — за поддержку этой работы.

ЛИТЕРАТУРА

- 1. Лаутон Дж., Вайнберг Ф. Электрические аспекты горения. М.: Энергия, 1976.
- 2. Морозов Ю. Г., Кузнецов М. В., Нерсесян М. Д., Мержанов А. Γ. Электрохимические явления в процессах самораспространяющегося высокотемпературного синтеза // Докл. РАН. 1996. Т. 351, № 6. С. 780–782.

- Трофимов А. И., Юхвид В. И. Эффект влия яния электромагнитного поля на горение системы Ti + C // Физика горения и взрыва. 1993. T. 26, № 1. С. 71–73.
- Баранов А. А., Булдаков В. Ф., Шелухин Γ. Г. Влияние электрического поля на скорость горения гетерогенных конденсированных систем // Физика горения и взрыва. 1976. Т. 12, N^o 5. C. 689–692.
- Захаренко Д. М., Иващенко Ю. С., Садырин А. Л., Яковлев С. И. Активация горения конденсированных систем плазмохимическим методом // Физика горения и взрыва. 1994. Т. 30, № 2. С. 124–126.
- Котин И. М. Влияние постоянного электрического поля на волну СВС // Физика горения и взрыва. 1994. Т. 30, № 5. С. 58–62.
 Мержанов А. Г. Тепловые волны в хи-
- Мержанов А. Г. Тепловые волны в химии. Черноголовка, 1978. (Препр. / АН СССР. ОИХФ).
- Зенин А. А., Нерсисян Γ. А. Структура зон волны СВС при образовании боридов вблизи критических условий погасания. Черноголовка, 1981. (Препр. / АН СССР. ОИХФ).
- Иващенко Ю. С., Комаров А. С., Павленко В. Л. Исследование электрофизических характеристик к-фазы при горении порохов баллиститного типа // Физика горения и взрыва. 1975. Т. 11, № 2. С. 213–217.
- Маслов В. М., Боровинская И. П., Мержанов А. Γ. Экспериментальное определение максимальных температур процессов самораспространяющегося высокотемпературного синтеза // Физика горения и взрыва. 1978. Т. 14, № 5. С. 79–85.
- Голубев В. А., Проскудин В. Ф., Бережко П. Г. и др. О влиянии усадки шлаков поджигающей таблетки на параметры зажигания // Физика горения и взрыва. 1991. Т. 27, № 5. С. 41-44.
- Жабокрицкий Р. А. Способ определения коэффициента тепловой активности пограничного слоя зоны шлифования металлов. А. с. № 569927 // Бюл. изобретений и товарных знаков. 1977. № 31. С. 145.
- Сорокин В. П., Воронов П. А., Леваков Е. В. Термитная смесь. А. с. № 377315 // Бюл. изобретений и товарных знаков. 1973. № 18. С. 41.

Поступила в редакцию 26/II 1999 г., в окончательном варианте — 17/VIII 1999 г.