УДК 532.517

РАЗВИТИЕ АЛГОРИТМА МОДЕЛИРОВАНИЯ СТРАТИФИЦИРОВАННЫХ ПОТОКОВ ПРИ НАЛИЧИИ ПРЕПЯТСТВИЙ И ЕГО ВЕРИФИКАЦИЯ ДЛЯ ТЕЧЕНИЯ С ВЕРТИКАЛЬНЫМ БАРЬЕРОМ

Г. Ю. Евтушок, А. В. Бойко, С. Н. Яковенко

Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН, 630090 Новосибирск, Россия E-mails: evtgeorgii@mail.ru, boiko@itam.nsc.ru, s.yakovenko@mail.ru

С использованием пакета OpenFOAM развит и верифицирован численный алгоритм решения уравнений аэрогидродинамики для случая устойчиво стратифицированного потока при наличии плохообтекаемого тела в виде тонкого вертикального барьера, генерирующего внутренние волны. Проведено численное моделирование рассматриваемого течения при различных числах Фруда для стационарного и нестационарного режимов обрушения волн и показано, что его результаты качественно согласуются с известными данными. Обсуждены причины различий значений вычисленного коэффициента сопротивления и данных, полученных ранее.

Ключевые слова: устойчивая стратификация, вертикальный барьер, внутренние волны, зоны рециркуляции, численное моделирование.

DOI: 10.15372/PMTF20190609

Введение. Неровности рельефа в потоке с устойчивой стратификацией генерируют подветренные внутренние волны, играющие большую роль в циркуляции атмосферы и океана, вызывая перенос импульса, энергии, химических примесей, морских организмов. Опрокидывание нелинейных высокоамплитудных волн порождает зоны повышенной турбулентности. Высокоэнергетические процессы под влиянием рельефа формируются, например, при зарождении боры у берегов Баренцева, Черного, Средиземного морей, когда возникают подветренные бури, опасные для судоходства, авиации, прибрежной инфраструктуры. Исследования подобных явлений актуальны в аэрогидрофизических приложениях, когда необходимо знать механизмы развития геофизической турбулентности. Несмотря на активное изучение, особенности эволюции областей обрушения поверхностных и внутренних волн при различных условиях исследованы недостаточно.

Натурные наблюдения развития неустойчивостей в атмосфере и океане ограничены возможностями аппаратуры и редкой сеткой станций измерения. Постановка лабораторного эксперимента по исследованию развития турбулентности в области обрушения волн также представляется сложной задачей. Для детальных измерений характеристик раз-

Работа выполнена в рамках Комплексной программы фундаментальных исследований СО РАН "Междисциплинарные интеграционные исследования" на 2018–2020 гг. (код проекта АААА-А18-118021590030-8).

[©] Евтушок Г. Ю., Бойко А. В., Яковенко С. Н., 2019

Рис. 2

Рис. 1. Область расчета при t = 0 устойчиво стратифицированного потока, набегающего на тонкий вертикальный барьер:

1 — изолинии плотности, 2 — барьер, 3 — профиль плотности $\rho(z)$ на входе (x = -100h, $t \geqslant 0)$ и в начале расчет
а $(-100h \leqslant x \leqslant 100h, t=0), 4\text{--}7$ — границы расчетной области; стрелки — постоянная по сечению скорость u(z) = U на входе и в начале расчета

Рис. 2. Подветренные волны, генерируемые препятствием при t > 0 [13]: ограниченный штриховой линией прямоугольник — зона опрокидывания волн

личных видов неустойчивости в опытах с телом, буксируемым вблизи дна или свободной поверхности гидродинамического канала (см., например, [1–3]), не хватает разрешения, а длительность опыта может быть недостаточна для достижения стационарной структуры развитой турбулентности. Альтернатива физическим экспериментам — численные исследования таких течений [4–8] при относительно небольших значениях числа Рейнольдса $\text{Re} = Uh/\nu$ (h — высота препятствия; U — постоянная скорость потока на входе).

В настоящее время появилась возможность использовать для решения задач вычислительной аэрогидродинамики открытые пакеты, реализующие методы спектральных элементов (например, Nek5000) и конечных объемов (например, OpenFOAM). Примеры решателей на основе этих методов и их использования в двумерных нестационарных расчетах с внутренними волнами в линейно стратифицированной среде приведены в работах [9–11].

В настоящей работе развивается алгоритм моделирования стратифицированного потока при наличии препятствия произвольной формы на основе программной среды OpenFOAM. На первом шаге для отладки и тестирования алгоритма решается задача о набегающем на вертикальный барьер течении с постоянной скоростью (при Re = 100) и постоянным градиентом плотности, создаваемым за счет увеличения солености воды при увеличении глубины канала (рис. 1). Такое течение исследовалось в физических и численных экспериментах [12, 13]. Установлено, что при Re > 50 и достаточно малых значениях числа Фруда возникают подветренные волны, после опрокидывания которых могут реализовываться как стационарные, так и нестационарные сценарии развития области обрушения волн (рис. 2). Согласно [12] при Re = 100 можно рассматривать двумерную задачу и не учитывать развитие вторичных возмущений в трансверсальном направлении, что позволяет провести верификацию кода с использованием относительно небольших вычислительных ресурсов.

Методы расчета. Используются уравнения неразрывности и Навье — Стокса для несжимаемой среды со стратификацией в приближении Буссинеска, дополненные уравнением для скаляра, представляющего собой отклонение плотности, или концентрацию, или соленость, и записанные в декартовых координатах x, z. Система основных уравнений для описания стратифицированных течений и различные методы их решения сформулированы, например, в [6–12]. Как и в [1–8], при постоянной скорости потока на входе определяющим параметром, помимо числа Рейнольдса, является число Фруда, которое характеризует стратификацию течения и степень нелинейности внутренних волн, генерируемых препятствием. Эти параметры входят в безразмерные уравнения Навье — Стокса. Градиентное число Ричардсона в таком случае не вводится вследствие отсутствия градиента скорости на входе.

Алгоритм численного решения определяющих уравнений основан на peализованном в OpenFOAM методе конечных объемов и включает решатель salinityBoussinesqPimpleEqFoam для расчета течений несжимаемой жидкости в приближении Буссинеска со стратификацией по солености [9]. Выбор метода решения обусловлен универсальностью и доступностью открытого программного пакета, а также возможностями модификации в нем решаемых уравнений, граничных условий, численных параметров. В определяющих уравнениях производные по времени аппроксимируются неявной схемой второго порядка, диффузионные слагаемые — центрально-разностной схемой второго порядка, члены конвекции — противопоточной схемой второго порядка с ограничителями. Ограничители конвективных потоков использовались также в [12], что позволило получить физически реалистичные результаты. Заметим, что в [13] для того же течения с устойчивой стратификацией при наличии барьера использовались другие численные алгоритмы, основанные на методе конечных разностей и многоблочной процедуре параллельных вычислений [6–8]. Использование альтернативных алгоритмов расчета для рассматриваемой тестовой задачи позволяет выполнить их кросс-верификацию, оценить точность и эффективность программного обеспечения, получить новые результаты.

Постановка задачи. В декартовых координатах x, y, z рассматривается течение вокруг неподвижного двумерного препятствия — тонкого барьера, имеющего высоту h (в направлении оси z), длину $l \ll h$ (по x), бесконечную ширину (по y) и помещенного при $0 \leq x \leq l, 0 \leq z \leq h$ на нижней границе расчетной области размером L = 200h по xи D = 5h по z (см. рис. 1). На входной границе (x = -100h) задается течение с постоянной скоростью U и постоянным отрицательным вертикальным градиентом плотности, равным

$$-\frac{\partial\rho}{\partial z}\Big|_{x=-100h} = \frac{\rho_0 N^2}{q} = \frac{\rho_0}{q} \frac{\pi KU}{D} = \frac{\rho_1 - \rho_0}{D} = -\frac{\partial\rho}{\partial z}\Big|_{t=0} > 0$$

и соответствующим случаю устойчивой стратификации (ρ_1 — максимальная плотность среды при z = 0; ρ_0 — минимальная плотность при z = D). Частота Брента — Вяйсяля $N \equiv \sqrt{-(g/\rho_0)(\partial \rho/\partial z)}$, зависящая от постоянного градиента плотности в начальный момент t = 0 (равного градиенту плотности во входном сечении в любой момент времени t > 0), постоянна во всем потоке.

Параметр устойчивости $K \equiv ND/(\pi U)$, определяющий соотношение члена плавучести и инерционных слагаемых в уравнении Навье — Стокса, как и число Фруда Fr $\equiv U/(Nh) = (D/h)/(\pi K)$, варьировался в диапазоне от значения K = 0 (нейтральная стратификация) до значения K = 3 (сильноустойчивая стратификация). Постановка задачи такая же, как в расчете и "инвертированном" эксперименте [12], в котором тонкий барьер буксировался вдоль свободной поверхности покоящейся среды с линейной стратификацией (воды различной солености) в канале глубиной D = 5h, длиной $L \gg D$, шириной

 $W \gg D$. Для определения коэффициента молекулярной диффузии $d = \nu/Sc$ в уравнении для скаляра использовалось число Шмидта Sc = $\nu/d \approx 700$, соответствующее диффузии соли в воде. Значение числа Рейнольдса Re = $hU/\nu = 100$ (такое же, как в [12]) при значении кинематической вязкости $\nu = 10^{-6} \text{ м}^2/\text{с}$ реализуется, например, при U = 0.01 м/c, h = 0.01 м. Следует отметить малость величины отклонения плотности $(\rho_1 - \rho_0)/\rho_0 \leqslant 0.01$ при $K \leqslant 3$, для которой справедливо решение задачи в приближении Буссинеска.

В используемой в расчете системе отсчета, связанной с неподвижным препятствием, задается постоянная скорость U набегающего потока не только на входной, но и на верхней границе (z = D) — "движущейся крышке". На выходной границе (x = 100h) формулируется неотражающее "конвективное" условие (называемое advective в пакете OpenFOAM), препятствующее отражению и возврату внутренних волн, генерируемых барьером. Как и в работе [12], для ослабления нежелательных эффектов отражения от входной границы волн, распространяющихся вверх по потоку, при значениях $K \ge 1,5$ (при которых такое отражение становится значительным) положение границы смещается от сечения x/h = -100 вверх по течению (к сечению x/h = -200). На дне (z = 0) ставится условие нулевого касательного напряжения $\partial u/\partial z = v = 0$ (свободное скольжение). Аналогичное условие $\partial v/\partial x = u = 0$ формулируется на поверхности барьера $(x = 0, z \le h)$. На всех границах, кроме входной, задается нулевой поток скаляра (отсутствие потока массы через граница). Начальные поля скорости и скаляра выбираются такими же, как на входе (однородными по x и z), барьер вводится мгновенно при t = 0, и при t > 0 течение эволюционирует к стационарному или нестационарному состоянию.

Численные эксперименты. Выбиралась равномерная сетка размером 1024×80 с шагами $\Delta x = 0.1953h$, $\Delta z = 0.0625h$ [12, 13]. Увеличение шагов в два раза приводит к существенным изменениям размеров крупномасштабных зон рециркуляции, возникающих после опрокидывания внутренних волн. В то же время размеры этих зон практически не меняются при измельчении сетки в два раза, что свидетельствует об адекватности выбора указанных значений Δx , Δz в данной и других работах. Заметим, что минимальные масштабы нерегулярностей для поля плотности в Sc^{1/2} раз меньше, чем для поля скорости (см., например, [6, 11]). При больших значениях Sc такое различие приводит к неудовлетворительному разрешению поля скаляра и увеличению его зашумленности мелкомасштабными возмущениями численной неустойчивости, что значительно искажает изолинии поля скаляра и его спектры [14]. Данный недостаток можно устранить путем явного или неявного (за счет снижения в некоторых точках потока порядка в схеме конвективных членов с ограничителями) введения подсеточной диффузии. Схемы конвекции с ограничителями введены в [12] и в настоящей работе для сглаживания мелкомасштабных возмущений и адекватного описания крупномасштабных особенностей полей скорости и скаляра.

Безразмерная величина шага по времени $\Delta t(U/h)$ выбиралась равной от 0,01 (в нестационарных режимах) до 0,50 (в стационарных). Несмотря на то что в рассматриваемый алгоритм встроена неявная схема аппроксимации производных по времени, при значении числа Куранта, большем единицы, воспроизведение поля течения в нестационарном режиме при выборе большого шага Δt затруднительно. Поэтому значение Δt существенно уменьшено. Для сравнения: в расчетах [13] с использованием явной схемы по времени для аналогичного течения при Re = 100 и на такой же сетке величина шага $\Delta t = 0,005h/U$ определяется ограничениями на локальное число Куранта. В [12] с использованием неявной схемы для производных по времени, сетки с $\Delta z \approx 0,1h$ и схемы адвекции с ограничением по потокам шаг по времени значительно больше ($\Delta t = 0,5h/U$), однако в расчетах [12] при некоторых значениях K величина Δt также уменьшена.

Как и в [12, 13], результаты расчетов свидетельствуют о генерации внутренних волн при K > 0, отсутствии опрокидывания волн при малых K (в условиях слабой стратифи-

 $a-t^*=35,\, {\it 6}-t^*=40,\, e-t^*=50;$ стрелки — направление скорости

кации), появлении этого эффекта при увеличении K и формировании стационарных зон рециркуляции при больших значениях времени t и $0,8 \leq K \leq 1,2$ (рис. 3). При этом, как и в [12, 13], в ламинарной зоне рециркуляции возникают два противоположно направленных вихря, растягивающихся вниз по течению с увеличением времени и асимптотически стремящихся к стационарному состоянию.

При K > 1,2 режим течения становится нестационарным, что подтверждают разрушение при K = 1,3 вихревой пары, периодическое возникновение и исчезновение зоны обрушения при K = 1,5 (рис. 4) и усиление с увеличением K осцилляций по времени коэффициента сопротивления $C_d(t)$, отнесенного к величине C_d при K = 0 (рис. 5), которая обозначается как $C_{d0} = C_d|_{K=0}$. Результаты расчетов при K = 0 (т. е. Fr $= \infty$) показывают, что стационарное значение коэффициента сопротивления равно $C_{d0} \approx 1,30$ при $t^* = tU/h \ge 200$ и приближается к значению $C_{d0} \approx 1,32$, полученному при $t^* \ge 100$ в [13]. Заметим, что при K = 1,2 наблюдаются значительные осцилляции $C_d(t)$, которые

Рис. 4. Поля вектора скорости при K = 1,5, h = 0,01 м в различные моменты безразмерного времени:

 $a - t^* = 30, \ b - t^* = 40, \ e - t^* = 75, \ c - t^* = 100;$ стрелки — направление скорости

Рис. 5. Зависимость нормализованного коэффициента сопротивления C_d/C_{d0} от времени при различных значениях параметра K: 1 - K = 0,1, 2 - K = 0,3, 3 - K = 0,6, 4 - K = 1,0, 5 - K = 1,2, 6 - K = 1,5, 7 - K = 2,8

постепенно затухают (см. рис. 5), и стационарный режим наступает асимптотически, при очень больших значениях времени t. В [13] такое поведение наблюдалось при K = 1,3.

Качественное согласие вычисленных в настоящей работе характеристик с результатами [12, 13], полученными при тех же значениях параметров (в частности, Re = 100), но с использованием других численных методов, свидетельствует о применимости развитых алгоритмов для исследования стратифицированных течений при наличии обрушения внутренних волн.

На рис. 6 приведены зависимости безразмерных периода колебаний и коэффициента сопротивления от параметра устойчивости стратификации K, полученные в настоящей работе и работах [12, 13]. Период колебаний T находился по нескольким осцилляциям на начальном этапе развития течения, т. е. возможна его оценка также для квазистационарных режимов, где при больших временах t коэффициент сопротивления C_d релаксирует к постоянному асимптотическому значению.

Результаты настоящей работы для зависимости T(K) (см. рис. 6,*a*) хорошо согласуются с данными [12] при $K \ge 1,7$ и незначительно отличаются от них при K < 1,7. Совпадение данных при $K \approx 3$ не представляется возможным: данный режим соответствует условиям сильноустойчивой стратификации, при которых точность опытов и расчетов меньше, а результаты опытов приведены не для тонкого барьера, а для протяженного по *x* препятствия.

Нормализованное значение коэффициента сопротивления сначала уменьшается с ростом параметра K, затем увеличивается до значений порядка двух; при K > 1,1 появляются нестационарные режимы, при K > 2,5 отношение C_d/C_{d0} вновь уменьшается до единицы и выходит на стационарный режим (см. рис. 6,6). При $0,8 \leq K \leq 1,2$ имеет место некоторое занижение значения C_d в расчетах [13] и завышение при моделировании в настоящей работе. Заметим, что в [12] полученные при Re = 100 расчетные значения C_d несколько меньше значений C_d , измеренных при Re = 10^4 (это в 100 раз больше, чем в рассматриваемом случае).

Рис. 6. Зависимости безразмерного периода колебаний в нестационарном режиме области обрушения волн (a) и нормализованного коэффициента сопротивления C_d/C_{d0} (б) от параметра стратификации K:

1 — расчет, выполненный в настоящей работе, 2 — расчет [12], 3, 4 — эксперименты [12] при наличии барьера и протяженного поxпрепятствия, 5 — расчет [13]

Следует отметить смещение влево результатов настоящего расчета при K < 1,3 и увеличение интервала нестационарности по сравнению с [12, 13] (см. рис. 6,6), а также то, что при использовании решателей в среде OpenFOAM, развитых в различных работах (см., например, [9]) для описания стратифицированного течения воды различной солености, поведение линий тока и коэффициента C_d на начальных этапах различается. Эти решатели, по-видимому, основаны на входящем в исходный пакет солвере boussinesqPimpleFoam, предназначенном для описания стратифицированных по температуре течений и включающем приближение Буссинеска уравнений Навье — Стокса. Полученные результаты (см. рис. 6) свидетельствуют о необходимости более тщательной верификации различных решателей на базе OpenFOAM при моделировании других тестовых течений при наличии и отсутствии стратификации и препятствий различной формы, а также об актуальности создания тематического решателя для рассматриваемых задач.

Заключение. Получены результаты верификации для тестовой задачи устойчиво стратифицированного течения с препятствием в виде тонкого вертикального барьера. Изучены сценарии развития внутренних волн в широком диапазоне значений числа Фруда (при значениях параметра устойчивости $K = 0 \div 3$). Достоверность результатов численного моделирования подтверждена их сравнением с данными расчетов и экспериментов [12, 13].

На примере течения при наличии барьера и стратификации показаны возможности численного алгоритма на базе открытого программного пакета OpenFOAM, позволяющего качественно описать эволюцию высокоамплитудных внутренних волн, их опрокидывание и трансформацию в вихревую пару для стационарных и нестационарных режимов.

Результаты проведенных численных экспериментов показывают, что при K > 0 барьер генерирует подветренные волны, длина которых уменьшается с уменьшением числа Фруда (увеличением K). При $0.8 \leq K \leq 1.2$ волны опрокидываются, порождая зоны рециркуляции, стремящиеся к стационарному состоянию при больших временах. При K > 1.2 режим стратифицированного течения вокруг барьера становится нестационарным: возникающая при опрокидывании волн вихревая пара периодически разрушается, при этом

коэффициент сопротивления барьера испытывает осцилляции, период которых сначала уменьшается с увеличением K (при K < 1.6), затем незначительно увеличивается (при $K \ge 1.6$). Полученные результаты согласуются с данными работ [12, 13].

ЛИТЕРАТУРА

- Castro I. P., Snyder W. H. Experiments on wave breaking in stratified flow over obstacles // J. Fluid Mech. 1993. V. 255. P. 195–211.
- Eiff O. F., Bonneton P. Lee-wave breaking over obstacles in stratified flow // Phys. Fluids. 2000. V. 12. P. 1073–1086.
- Eiff O., Huteau F., Tolu J. High-Reynolds-number orographic wave-breaking experiments // Dynamics Atmosphere Oceans. 2005. V. 40. P. 71–89.
- Paisley M. F., Castro I. P. A numerical study of wave-breaking in stratified flow over obstacles // Dynamics Atmosphere Oceans. 1996. V. 23. P. 309–319.
- Gheusi F., Stein J., Eiff O. F. A numerical study of three-dimensional orographic gravity-wave breaking observed in a hydraulic tank // J. Fluid Mech. 2000. V. 410. P. 67–99.
- Yakovenko S. N., Thomas T. G., Castro I. P. A turbulent patch arising from a breaking internal wave // J. Fluid Mech. 2011. V. 677. P. 103–133.
- Yakovenko S. N., Thomas T. G., Castro I. P. Transition through Rayleigh Taylor instabilities in a breaking internal lee wave // J. Fluid Mech. 2014. V. 760. P. 466–493.
- Yakovenko S. N. Lee wave breaking region: the map of instability development scenarios // J. Phys. Conf. Ser. 2017. V. 894. 012112.
- Брузе К., Доксуа Е., Ерманюк Е. и др. Прямое численное моделирование аттракторов внутренних волн стратифицированной жидкости в трапецеидальной области с колеблющейся вертикальной стенкой // Тр. Ин-та систем. программирования РАН. 2014. Т. 26, вып. 5. С. 117–141.
- 10. **Провидухина М., Сибгатуллин И.** Применение спектральных методов обработки данных к результатам численного моделирования аттракторов внутренних волн // Тр. Ин-та систем. программирования РАН. 2016. Т. 28, вып. 1. С. 275–282.
- 11. Brouzet C., Sibgatullin I. N., Scolan H., et al. Internal wave attractors examined using laboratory experiments and 3D numerical simulations // J. Fluid Mech. 2016. V. 793. P. 109–131.
- Paisley M. F., Castro I. P., Rockliff N. J. Steady and unsteady computations of strongly stratified flows over a vertical barrier // Stably stratified flows: Flow and dispersion over topography. Oxford: Clarendon Press, 1994. P. 39–59.
- 13. Yakovenko S. N. Instability and turbulence in a flow with stable stratification and obstacle at different conditions // AIP Conf. Proc. 2018. V. 2027. 030110.
- Yakovenko S. N., Thomas T. G., Castro I. P. On subgrid-scale model implementation for a lee-wave turbulent patch in a stratified flow above an obstacle // Springer Proc. Phys. 2014. V. 149. P. 233–236.

Поступила в редакцию 21/I 2019 г., после доработки — 17/VI 2019 г. Принята к публикации 29/VII 2019 г.