УДК 543.42: 662.67 DOI: 10.15372/KhUR2020265

Исследование бурых углей методом инфракрасной спектроскопии

В. Ю. МАЛЫШЕВА¹, Н. И. ФЕДОРОВА¹, З. Р. ИСМАГИЛОВ^{1,2}

¹Федеральный исследовательский центр угля и углехимии СО РАН, Кемерово (Россия)

E-mail: iccms@iccms.sbras.ru

²Институт катализа СО РАН, Новосибирск (Россия)

Аннотация

Представлены результаты исследования методом инфракрасной (ИК) спектроскопии бурых углей различных месторождений России и Монголии. Полученные данные свидетельствуют о наличии в бурых углях сложных структур, содержащих алифатические и ароматические углеводородные фрагменты, а также кислородсодержащие функциональные группы (карбонильные, гидроксильные, эфирные). Установлено, что рассчитанный по результатам ИК-спектроскопии показатель ароматичности f_a имеет линейную корреляционную связь с показателями качества бурых углей – выходом летучих веществ (V^{daf}), связанным углеродом (C_{fix}) и атомным отношением H/C.

Ключевые слова: бурые угли, элементный состав, связанный углерод, ИК-спектроскопия, показатель ароматичности

введение

Современная тенденция в исследовании структуры углей и угольных продуктов – это применение инструментальных физико-химических методов исследования, одним из которых является инфракрасная (ИК) спектроскопия. Данный метод позволяет установить характер атомных группировок, их содержание в веществе, степень и характер замещения ароматического водорода; получать данные по содержанию тех функциональных групп (СН₃, СН₂ (алифатические), СН (ароматические)), которые невозможно или затруднительно охарактеризовать химическими методами; выяснять природу водородных связей и др. [1–4].

В данной работе приведены результаты исследования методом ИК-спектроскопии бурых углей, более низкометаморфизованных по сравнению с каменными углями. Согласно ГОСТ 25543-2013, данный вид угольного сырья рекомендуется использовать в качестве энергети-

© Малышева В. Ю., Федорова Н. И., Исмагилов З. Р., 2020

ческого топлива и как химическое сырье для получения жидких углеводородов и различных синтетических веществ, а также газа и удобрений. При специальной обработке из бурого угля можно получать кокс, пригодный для металлургического производства [5, 6]. При этом следует отметить, что для прогноза технологических свойств [7, 8] и выбора основных направлений использования углей конкретного месторождения необходимы данные об их составе и свойствах.

Цель работы — изучение основных структурных фрагментов органического вещества бурых углей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объектов исследования использовались угли следующих месторождений: Итатское (1), Мунайское (2), Багануурское (Монголия) (3), Архаро-Богучанское (4), Кангаласское (5). Угольные образцы взяты из коллекции углей, формируемой в Институте углехимии и химического материаловедения ФИЦ УУХ СО РАН.

Итатское буроугольное месторождение размещается в западной части Канско-Ачинского бассейна на территории Итатского и Тисульского районов Кемеровской области. Мунайское угольное месторождение - единственное угольное месторождение, расположенное в Солтонском районе Алтайского края в 100 км от г. Бийска. Архаро-Богучанское месторождение бурого угля (Нижне-Зейский бассейн) расположено в Архаринском административном районе в 15 км от станции Архара Амурской области. Кангаласское буроугольное месторождение приурочено к юго-восточному крылу Вилюйской синеклизы и составляет южную часть Якутско-Кангаласского угленосного района Ленского бассейна. Багануурское месторождение бурого угля расположено в центральном аймаке в 110 км на восток от г. Улан-Батор и относится к крупным наиболее промышленно значимым месторождениям Монголии [9-11].

Технический анализ углей проводили стандартными методами. Связанный углерод вычисляли по следующей формуле [12, 13]: $C_{\rm fix}$ = 100 – $W^{\rm a}$ – $A^{\rm d}$ – $V^{\rm d}$

где W^a – влага аналитическая; А^d – зольность; V^d – выход летучих веществ на сухое состояние. Элементный состав органической массы бурых углей определяли с помощью элементного анализатора Thermo Flash 2000 (Thermo Fisher Scientific, Великобритания); результаты определений пересчитывали на сухое беззольное состояние образца (daf).

Петрографический анализ выполняли с использованием автоматизированного комплекса оценки марочного состава углей системы SIAMS-620 (Россия) в среде масляной иммерсии по ГОСТ 9414.1-94, ГОСТ Р 55662-2013, ГОСТ Р 55663-2013 и ГОСТ Р 55659-2013. Подсчет микрокомпонентов производился вручную при увеличении в отраженном свете в 300 раз. Результаты петрографического исследования приведены на "чистый уголь", без учета минеральных веществ.

ИК-спектры регистрировали с помощью ИК-Фурье спектрометра "Инфралюм ФТ-08" (Россия). Смесь образца массой 10 мг с KBr массой 250 мг обрабатывалась в вибрационной мельнице в течение 3 мин, далее готовились таблетки прессованием при давлении 20 МПа. Спектры регистрировались в диапазоне 500-4000 см⁻¹, с 256 сканами и разрешением 4 см⁻¹. Коррекция

базовой линии проводилась с использованием программы "СпектраЛюм".

Анализ ИК-спектров включал оценку интенсивности следующих полос поглощения (п. п.): валентные колебания гидроксильных групп, в том числе в составе воды, - 3400 см⁻¹, валентные колебания связей С-Н алкильных групп в области 2930-2860 см⁻¹, валентные колебания связи C=O при 1710 см⁻¹, валентные колебания С=С олефинов, ароматических и полиароматических соединений в области 1630-1600 см⁻¹, асимметричные деформационные колебания групп -CH₂- и -CH₂ с сигналом при 1455 см⁻¹, деформационные колебания связей С-Н ароматического кольца при 870, 820 и 750 см⁻¹ [1, 2, 14].

Посредством разложения ИК-спектров для исследованных образцов определен показатель ароматичности f_a по формулам, предложенным в [3, 4, 15]:

$$\begin{split} \frac{H_{al}}{H} &= \frac{H_{al}}{H_{al} + H_{ar}} = \frac{S_{3000-2800}}{S_{3000-2800} + S_{900-700}}\\ \frac{C_{al}}{C} &= \left(\frac{H_{al}}{H} \cdot \frac{H}{C}\right) / \frac{H_{al}}{C_{al}}\\ f_{a} &= 1 - \frac{C_{al}}{C} \end{split}$$

где H_{э1}/H – отношение содержания водорода в алифатических структурах (H_{al}) к содержанию водорода (H) в органической массе угля, определенное по интегральной интенсивности п. п. для H_{al} при 2800-3000 см⁻¹ ($S_{3000-2800}$) и 900-700 см $^{-1}~(S_{900-700})$ для ароматического водорода (H_{ar}); С_{аl}/С – доля углерода в алифатических фрагментах; Н/С – параметр, вычисляемый на основании элементного анализа; H_{al}/C_{al} - коэффициент, равный 1.8 (принятое значение для углей) [16].

Соотношение ароматических и алифатических групп также рассчитывали по формуле

$$S_{\rm ar}/S_{\rm al} = S_{900-700}/S_{3000-2815}$$

где $S_{\rm 900-700}$ – интегральная интенсивность п. п. ароматических групп в интервале 900-700 см⁻¹; S₃₀₀₀₋₂₈₁₅ – интегральная интенсивность п. п. алифатических групп в интервале 3000-2815 см⁻¹ [16].

Соотношение групп СН₂/СН₃ определяли по отношению интенсивностей п. п. в ИК-спектрах при 2920 и 2958 см⁻¹: чем выше данный параметр, тем длиннее алифатические цепи и меньше их степень разветвления.

Структурный параметр (R/C),, отражающий степень конденсации ароматических колец в угольной структуре, рассчитывали по формуле Ван Кревелена [16-18].

Месторождение	Технический анализ, %		Элем соста	Элементный состав, % на daf		Атомное отношение				
	W ^a	\mathbf{A}^{d}	$V^{\rm daf}$	\mathbf{V}^{d}	$\mathrm{C}_{\mathrm{fix}}$	С	Η	(O + N + S)	H/C	O/C
Итатское	7.0	7.5	48.5	44.9	40.6	68.7	4.6	27.0	0.79	0.29
Мунайское	8.5	7.2	46.4	43.1	41.2	71.5	4.5	24.0	0.80	0.25
Багануур	11.3	7.4	45.2	41.9	39.4	70.9	4.9	24.2	0.83	0.26
Архаро-Богучанское	4.5	10.8	44.1	39.3	42.4	71.0	4.9	24.1	0.83	0.25
Кангаласское	2.8	2.8	41.4	40.2	54.2	77.5	5.5	17.0	0.85	0.16

ТАБЛИЦА 1

Характеристика исследованных образцов

Примечание. W^a – влага аналитическая, A^d – зольность, V^{daf} – выход летучих веществ на сухое беззольное состояние, V^d – выход летучих веществ на сухое состояние, C_{fix} – связанный углерод, daf – сухое беззольное состояние образца.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Данные технического анализа и элементного состава приведены в табл. 1. Видно, что зольность исследованных образцов практически не превышает порядка 10 %. Выход летучих веществ (V^{daf}) в исследованных образцах колеблется от 40 до 50 % (см. табл. 1). Наибольшее значение V^{daf} определено для образца угля Итатского месторождения (48.5 %), наименьшее – для Кангаласского бурого угля (41.4 %). Между выходом летучих веществ V^{daf} и атомным отношением H/C наблюдается четко выраженная корреляционная линейная связь (рис. 1).

Характеристика петрографического состава бурых углей приведена в табл. 2. Видно, что показатель отражения витринита ($R_{\rm o,r}$) изменяется от 0.388 % (образец 1, Итатское месторождение) до 0.490 % (образец 5, Кангаласское месторождение).

В ИК-спектрах исследованных образцов (рис. 2) присутствует п. п. в области 3420 см⁻¹, которая относится к валентным колебаниям ОН-групп, связанных водородной связью. Наблюдается п. п. слабой интенсивности в области 3040 см⁻¹, характерная для валентных колебаний ароматических СН-групп. В области 2920-2850 см⁻¹ присутствуют интенсивные п. п. симметричных валентных колебаний метильных и метиленовых групп C–H_", п. п. при 1445 см⁻¹ характерна для деформационных колебаний алифатических групп СН₂ и СН₃. Плечо в области 2960 см⁻¹ относится к ассиметричным валентным колебаниям алифатических СН₃-групп и свидетельствует о малой степени разветвленности боковых цепей. Полоса при 1710 см⁻¹ принадлежит валентному колебанию С=О карбоксильных и карбонильных групп. В ИК-спектрах присутствует интенсивная п. п. при 1610 см⁻¹, которую

ТАБЛИЦА 2

исследова	нных образцов	
Код	Петрографический	Показатель
образца	параметр, %	отражения
VEIIS		витринита

Характеристика петрографического состава

ооразца угля	пара	метр,	%0	отражения витринита			
	V _t	\mathbf{S}_{v}	Ι	L	∑ОК	$R_{ m o,r}$, %	σ_R
1	54	42	4	1	32	0.39	0.05
2	62	4	31	3	34	0.41	0.05
3	27	8	63	2	68	0.40	0.03
4	41	43	12	4	41	0.40	0.05
5	86	2	6	6	7	0.49	0.03

Примечание. Vt – витринит, Sv – семивитринит, I – инертинит, L – липтинит, Σ OK – сумма отощающих компонентов, $R_{\rm o,r}$ – показатель отражения витринита, σ_R – стандартное отклонение.

Рис. 1. Взаимосвязь между выходом летучих веществ $(V^{\rm daf})$ бурых углей и атомным отношением H/C в их органической массе.

580

В. Ю. МАЛЫШЕВА и др.

ТАБЛИЦА 3
Структурные параметры, вычисленные
по данным ИК-спектров бурых углей

Код образца угля	$f_{\rm a}$	$S_{\rm ar}/S_{\rm al}$	(R/C) _u	$\rm H_{al}/H$	$\mathrm{CH}_{2}/\mathrm{CH}_{3}$
1	0.54	0.004	0.32	1.00	3.42
2	0.57	0.006	0.32	0.99	7.00
3	0.58	0.104	0.29	0.91	7.58
4	0.59	0.113	0.29	0.90	6.75
5	0.63	0.289	0.26	0.78	5.15

можно отнести к колебаниям C=C-связей ароматических структур или C=O-связи в карбоксилах, усиленных кислородсодержащими группами. Полоса поглощения в области 1166-1280 см⁻¹ обусловлена колебаниями кислородсодержащих групп, преимущественно эфирных C-O-связей. Полоса поглощения в области 817 см⁻¹ относится к внеплоскостным деформационным колебаниям ароматической CH-связи [19, 20]. Полученные данные свидетельствуют о наличии в органической массе исследованных углей сложных структур, содержащих алифатические и ароматические углеводородные фрагменты, а также

Рис. 2. ИК-спектры исследованных образцов бурых углей Итатского (*a*), Кангаласского месторождений (б).

Структурный	$C_{fix}(R)$	$V^{daf}(R)$	H/C(R)
параметр			
$f_{\rm a}$	$f_{\rm a} = 0.004x + 0.369 \ (0.86)$	$f_{\rm a} = -\ 0.012x + 1.140 \ (0.99)$	$f_{\rm a} = 1.277x - 0.466 \ (0.95)$
H_{al}/H	$H_{al}/H = -0.012x + 1.485 (0.87)$	$H_{al}/H = 0.032x - 0.567 (0.99)$	$H_{al}/H = -3.593x + 3.862 (0.97)$
$S_{ m ar}/S_{ m al}$	$S_{ar}/S_{al} = 0.017x - 0.65 (0.89)$	$S_{ar}/S_{al} = 0.004x^2 - 0.447x + 11.06 (0.98)$	$S_{\rm ar}/S_{\rm al} = 4.477 x - 3.569 \ (0.94)$
$(R/C)_{u}$	$(R/C)_u = -0.003x + 0.456 (0.86)$	$(R/C)_{u} = 0.009x - 0.130 (0.97)$	$(R/C)_{u} = -1.023x + 1.136 (0.98)$

ТАБЛИЦА 4

Корреляции между структурными и технологическими параметрами бурых углей

Примечание. R – коэффициент корреляции.

кислородсодержащие функциональные группы (карбонильную, гидроксильную, эфирную).

Для выявления особенностей молекулярной структуры органической массы исследованных углей использованы параметры, рассчитанные по ИК-спектрам (табл. 3). Анализ полученных данных показал, что образцы бурых углей характеризуются различной степенью ароматичности их органического вещества (параметры f_a и $S_{\rm ar}/S_{\rm al}$). Показатель ароматичности f_a изменяется от 0.54 (образец 1) до 0.63 (образец 5).

Наибольшее значение параметра $\rm CH_2/\rm CH_3$ наблюдается для бурых углей Багануурского и Мунайского месторождений (7.00 и 7.58 соответственно), что указывает на преобладание в их органической массе более длинных алифатических цепей с меньшей степенью разветвления. При этом степень конденсации ароматических колец в структурных единицах органического вещества бурых углей изменяется в достаточно узком диапазоне (см. табл. 3, параметр (R/C)_и) [16, 21].

Проведен графический анализ между вычисленными структурными параметрами и стандартными показателями качества бурых углей. Результаты представлены в табл. 4. Видно, что между структурными параметрами f_a , H_{al}/H , S_{ar}/S_{al} и $(R/C)_u$ существует достаточно тесная корреляционная связь с количеством связанного углерода $C_{\rm fix}$, выходом летучих веществ V^{daf} и атомным отношением H/C. Следовательно, расчетные параметры, вычисленные по данным ИК-спектров, позволяют выявить особенности строения органического вещества образцов угля.

ЗАКЛЮЧЕНИЕ

Проведено исследование методом ИК-спектроскопии пяти образцов бурых углей различных месторождений. Анализ спектров показывает, что образцы бурых углей содержат алифатические функциональные (СН₂ и СН₃), ароматические функциональные (C=C), ароматические кольцевые (-CH) и кислородсодержащие функциональные (-OH, C=O и C-O) группы.

Структурные параметры, рассчитанные по ИК-спектрам, позволили выявить особенности молекулярной структуры органической массы исследованных бурых углей. Показано, что с ростом генетической зрелости образцов (увеличение показателя отражения витринита) возрастает степень ароматичности их органической массы.

Установлены корреляционные соотношения между изученными структурными параметрами и стандартными показателями качества бурых углей – выходом летучих веществ, связанным углеродом и атомным отношением H/C.

Работа выполнена с использованием оборудования Кемеровского центра коллективного пользования ФИЦ УУХ СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1 Русьянова Н. Д. Углехимия. М.: Наука, 2003. 315 с.
- 2 Гюльмалиев А. М., Головин Г. С., Гладун Т. Г. Теоретические основы химии угля. М.: МГУ, 2003. 556 с.
- 3 Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. Таблицы спектральных данных. М.: Мир, 2006. 438 с.
- 4 He X., Liu X., Nie B., Song D. FTIR and Raman spectroscopy characterization of functional groups in various rank coals // Fuel. 2017. Vol. 206. P. 555–563.
- 5 Школлер М. Б. Полукоксование каменных и бурых углей. Новокузнецк: Инженерная академия России, Кузбасский филиал, 2001. 235 с.
- 6 Дангаа Оюунболд, Сыроежко А. М., Славошевская Н. В., Страхов В. М. Комплексная переработка бурых углей Монголии и России с получением гуминовых препаратов, малозольных углеродных восстановителей и углебрикетов // Кокс и химия. 2010. № 3. С. 26–32.
- 7 Патраков Ю. Ф., Федорова Н. И. О возможных путях комплексной переработки низкосортных углей и углеотходов Кузбасса // Уголь. 2000. № 2. С. 60-61.
- 8 Лиштван И. И., Дударчук В. М., Крайко В. М. Перспективы глубокой переработки твердых горючих ископаемых Беларуси // Химия твердого топлива. 2017. № 5. С. 3–9.
- 9 Воробьев Б. М. Уголь мира. Т. III. М.: Горная книга, 2013. 752 с.

- 10 Миронов К. В. Справочник геолога-угольщика. М.: Недра, 1991. 363 с.
- 11 Бадамсурэн Хоохорын. Оценка недропользования на горных предприятиях Монголии. М.: Изд-во Моск. гос. гор. ун-та, 2004. 390 с.
- 12 Золотухин Ю. А. О взаимосвязи показателя отражения витринита углей, смесей углей и шихт с некоторыми характеристиками их качества // Кокс и химия. 2018. № 4. С. 14-28.
- 13 Федорова Н. И., Исмагилов З. Р. Определение показателя отражения витринита углей по углехимическим данным // Кокс и химия. 2020. № 5. С. 7–11.
- 14 Мунхцэцэг С., Хомич А. В., Поклонский Н. А., Даваасамбуу Ж. Спектры инфракрасного поглощения каменных углей различной степени углефикации // Журнал прикладной спектроскопии. 2007. Т. 74, № 3. С. 304–309.
- 15 Okolo G. N., Neomagus H. W. J. P., Everson R. C., Roberts M. J., Bunt J. R., Sakurovs R., Mathews J. P. Chemicalstructural properties of South African bituminous coals: Insights from wide angle XRD-carbon fraction analysis // Fuel. 2015. Vol. 158. P. 779–792.

- 16 Orrego-Ruiz J. A., Cabanzo R., Mejía-Ospino E. Study of Colombian coals using photoacoustic Fourier transform infrared spectroscopy // International Journal of Coal Geology. 2011. Vol. 85, No. 3–4. P. 307–310.
- 17 Van Krevelen D. W. Coal: Typology Physics Chemistry – Constitution. 3d Ed. Amsterdam *et al.*: Elsevier, 1993. 979 p.
- 18 Jiang J., Yang W., Cheng Y., Liu Z., Zhang Q., Zhao K. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification // Fuel. 2019. Vol. 239. P. 559–572.
- 19 Шакс И. А., Файзуллина Е. М. Инфракрасные спектры ископаемого органического вещества. Л.: Недра, 1974. 131 с.
- 20 Королев Ю. М., Гагарин С. Г., Фриесен В. И., Микаэлан К. Г. Рентгенографическое и ИК-спектроскопическое изучение низкометаморфизованных углей // Кокс и химия. 1997. № 12. С. 33–38.
- 21 Святец Е. И. Технологическое использование бурых углей. М.: Недра, 1985. 207 с.