2010. Том 51, № 1

Январь – февраль

C. 179 – 182

КРАТКИЕ СООБЩЕНИЯ

УДК 546.35.65.832.776

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ТРОЙНОГО МОЛИБДАТА В СИСТЕМЕ Rb₂MoO₄—Nd₂(MoO₄)₃—Zr(MoO₄)₂

© 2010 О.Д. Чимитова¹*, Б.Г. Базаров¹, Р.Ф. Клевцова², А.Г. Аншиц³, К.Н. Федоров¹, А.В. Дубенцов¹, Т.А. Верещагина³, Ю.Л. Тушинова¹, Л.А. Глинская², Ж.Г. Базарова¹, Л.И. Гонгорова¹

¹Учреждение Российской академии наук Байкальский институт природопользования СО РАН, Улан-Удэ ²Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

³Учреждение Российской академии наук Институт химии и химической технологии СО РАН, Красноярск

Статья поступила 28 января 2009 г.

Методом рентгенофазового анализа изучена тройная солевая система Rb₂MoO₄— Nd₂(MoO₄)₃—Zr(MoO₄)₂. Раствор-расплавной кристаллизацией при спонтанном зародышеобразовании выращены кристаллы тройного молибдата рубидия—неодима циркония. По дифракционным рентгеновским данным (автоматический дифрактометр X8 APEX, MoK_a-излучение, 1345 F(hkl), R = 0,0356) уточнены кристаллическая структура и его состав — Rb_{4,7}Nd_{0,7}Zr_{1,3}(MoO₄)₆. Размеры тригональной элементарной ячейки: a = b = 10,7561(2), c = 38,7790(12) Å, V = 3885,41(16) Å³, Z = 6, пр. гр. $R \overline{3} c$. Трехмерный смешанный каркас структуры состоит из Мо-тетраэдров и двух сортов октаэдров: (Nd,Zr)O₆. Уточнено распределение катионов Nd³⁺ и Zr⁴⁺ по двум кристаллографическим позициям. Атомы рубидия двух сортов расположены в крупных полостях каркаса.

Ключевые слова: рубидий, неодим, цирконий, молибдат, синтез, кристаллическая структура.

Сложные оксидные соединения каркасного строения перспективны для создания полифункциональных материалов — твердых электролитов, химических сенсоров, матриц, способных к прочной фиксации отходов техногенного происхождения [1, 2]. К таким каркасным структурам относятся структурные типы NaZr₂(PO₄)₃ (NZP) и K₂Mg₂(SO₄)₃ [2], Tl₂Mg₂(MoO₄)₃ (лангбейнит) [3], также тройные молибдаты Rb₅LnHf(MoO₄)₆ [4, 5].

Все перечисленные соединения построены из изолированных октаэдров MO₆ и тетраэдров XO₄, различающихся характером взаимного расположения полиэдров, в результате образуется различное количество полостей разнообразных по форме и вариации изоморфных замещений.

На основании известных данных по молибдатам $Rb_5LnHf(MoO_4)_6$ (тригональная сингония, пр. гр. $R\overline{3}c$) [5] можно предположить существование циркониевого аналога.

Цель настоящей работы — изучение возможности образования соединения тригональной сингонии с пространственной группой $R\overline{3}c$ в системе Rb₂MoO₄—Nd₂(MoO₄)₃—Zr(MoO₄)₂.

Исходные молибдаты рубидия и циркония синтезировали из соответствующего карбоната, оксида циркония и триоксида молибдена (ХЧ) при 450—700 °C. Время отжига составляло 50—100 ч. Молибдат неодима получали из Nd₂O₃ (99,9 % основного вещества) и MoO₃ нагреванием при 450—800 °C в течение 50—110 ч.

Фазообразование в системе Rb_2MoO_4 — $Nd_2(MoO_4)_3$ — $Zr(MoO_4)_2$ изучали методом "пересекающихся разрезов" в субсолидусной области (450—600 °C) и в системе установлено образова-

^{*} E-mail: chimitova_od@mail.ru

Таблица 1

М	1580,90	μ_{Mo} , $mm{Mm}^{-1}$	13,551
<i>Т</i> , К	293(2)	Размер кристалла, мм	$0,12 \times 0,10 \times 0,08$
Сингония	Тригональная	Диапазон Ө, град.	2,43—32,57
Простр. группа	$R\overline{3}c$	N_1/N_2^*	12430 / 1574; [R(int) = 0.0369]
<i>a</i> , <i>c</i> , Å	10,7561(2), 38,7790(12)	N ₃ *	58
V, Å ³	3885,41(16)	GOOF для F^2	1,239
Ζ	6	R (для N_4^*)	R1 = 0,0356; wR2 = 0,1081; N1 = 1345
$d_{\rm выч}, \Gamma/{\rm cm}^3$	4,054	R (для N ₂)	R1 = 0,0452; wR2 = 0,1142

Кристаллографические характеристики, детали эксперимента и уточнения для Rb_{4.7}Nd_{0.7}Zr_{1.3}(MoO₄)₆

* N_1 , N_2 , N_4 — число измеренных, независимых, ненулевых ($I > 2\sigma(I)$) отражений; N_3 — число уточняемых параметров.

ние тройных молибдатов состава 5:1:2, 1:1:1 и 2:1:4. Достижение равновесия контролировали рентгенографически (дифрактометр Advance D8 фирмы Bruker AXS с графитовым монохроматором).

Раствор-расплавной кристаллизацией при спонтанном зародышеобразовании выращены монокристаллы тройного молибдата рубидия—неодима—циркония, симметрия и размеры элементарной ячейки которых указывали на принадлежность их к структурному типу соединений состава 5:1:2. В качестве растворителя использовали димолибдат рубидия [6—9]. Проведенное уточнение структуры по комплексу программ SHELXL-97 [10] подтвердило изоструктурность исследуемого молибдата соединениям $Rb_5NdHf(MoO_4)_6$ и $Rb_5ErHf(MoO_4)_6$. Полученное соединение $Rb_5NdZr(MoO_4)_6$ охарактеризовано колебательной спектроскопией (ИК и КР). Получены и проанализированы колебательные спектры соединения и проведены отнесения полос.

Экспериментальный массив рентгеновских отражений для рентгеноструктурного исследования получили при съемке монокристалла на автодифрактометре Bruker X8 APEX, оснащенном двухкоординатным CCD-детектором по стандартной методике при комнатной температуре. Кристаллографические характеристики, некоторые дополнительные детали эксперимента и уточнения структуры приведены в табл. 1. Выбор центросимметричной пространственной группы $R\overline{3}c$ сделали на основе анализа погасаний в массиве интенсивностей, подкрепленного проведенными расчетами.

В процессе уточнения структуры было выявлено, что атомы Nd и Zr статистически размещаются по двум позициям. С учетом этого провели окончательное уточнение координатных и тепловых параметров структуры. Позиционные и эквивалентные изотропные тепловые параметры базисных атомов приведены в табл. 2, основные межатомные расстояния — в табл. 3.

Таблица 2

Атом	x	у	Ζ	$U_{ m 3KB}$	Атом	x	у	Ζ	$U_{ m 3kb}$
M(1)*	0	0	0	23(1)	O(1)	1766(5)	351(5)	360(1)	35(1)
M(2)*	0	0	2500	13(1)	O(2)	4847(4)	2318(4)	519(1)	22(1)
Mo(1)	3522(1)	592(1)	336(1)	18(1)	O(3)	3571(5)	-821(5)	539(1)	29(1)
Rb(1)*	0	0	3532(1)	22(1)	O(4)	3933(5)	592(6)	-93(1)	35(1)
Rb(2)	3882(1)	0	2500	37(1)					

Координаты базисных атомов (× 10^4) и эквивалентные изотропные тепловые параметры (Å² × 10^3 , $U_{3\kappa B} = 1/3(U_{11} + U_{22} + U_{33}))$ в структуре Rb_{4.7}Nd_{0.7}Zr_{1.3}(MoO₄)₆

* M(1) = 0.6Nd + 0.4Zr; M(2) = 0.1Nd + 0.9Zr, Rb(1) = 0.85Rb.

Таблица 3

Мо(1)-тетраэдр		Nd,Zr-октаэдры		Кратчайшие межкатионные расстояния	
Связь	d, Å	Связь	d, Å	Связь	<i>d</i> , Å
Mo(1)—O(4)	1,723(5)	M(1)—O(1)	2,231(5) × 6	Mo(1)—Mo(1)'	3,927(5)
Mo(1)—O(3)	1,734(5)	M(2)—O(2)	$2,092(4) \times 6$	Mo(1)—Mo(1)"	4,376(3)
Mo(1)—O(1)	1,776(5)	Rb(1)-девятивершинник		Mo(1)— $Rb(1)$	3,802(3)
Mo(1)—O(2)	1,826(4)	Rb(1)—O(3)	$2,902(5) \times 3$	Mo(1)—Rb(1)'	4,159(1)
(Mo(1)—O)	1,765	Rb(1)—O(4)	$2,972(5) \times 3$	Mo(1)—Rb(2)	3,921(2)
Угол	ω, град.	Rb(1)—O(2)	$3,258(4) \times 3$	Mo(1)—Rb(2)'	3,939(2)
O(4)—Mo(1)—O(3)	108,5(3)	Rb(2)-полиэдр		Mo(1)—M(1)	3,747(2)
O(4)—Mo(1)—O(1)	107,7(3)	Rb(2)—O(4)	$2,937(5) \times 2$	Mo(1)—M(2)	3,726(2)
O(3)—Mo(1)—O(1)	110,2(2)	Rb(2)—O(3)	$3,077(5) \times 2$	M(2) - Rb(1)	4,000(4)
O(4)—Mo(1)—O(2)	107,7(2)	Rb(2)—O(2)	$3,167(4) \times 2$	M(2)—Rb(2)	4,176(1)
O(3)—Mo(1)—O(2)	111,4(2)	Rb(2)—O(1)	$3,368(5) \times 2$	Rb(1)—Rb(2)	4,142(2)
O(1)—Mo(1)—O(2)	111,2(2)	Rb(2)—O(3)'	3,391(5) × 2		
(O-Mo(1)-O)	109,45	Rb(2)—O(1)'	$3,471(5) \times 2$		

Основные межатомные расстояния в структуре Rb_{4.7}Nd_{0.7}Zr_{1.3}(MoO₄)₆

В кристаллической структуре исследуемого молибдата оба сорта атомов Мо имеют тетраэдрическую кислородную координацию с разбросом индивидуальных расстояний Мо—О в пределах 1,723(5)—1,826(4) Å при среднем расстоянии 1,765 Å, близком к стандартному [11]. Изменение этих расстояний обусловлено различной координацией атомов О катионами Rb, Nd, Zr и сравнимо с таковыми в других аналогичного состава и типа структурах [6—9].

Как указывалось выше, в данной структуре, как и в структурах ее аналогов, установлено статистическое заселение позиций M(1) и M(2) атомами неодима и циркония. В данном случае разница в величинах расстояний М—О (2,231 и 2,092 Å) указывает на то, что в структуре позицию M(1) предпочтительно занимают более крупные катионы, а именно Nd^{3+} . Ориентируясь на величины ионных радиусов катионов [12], качественное согласование размера октаэдра и коэффициента заполнения атомами Nd и Zr позиций М приводит к следующему: в особой точке на инверсионной оси (позиция M(1)) размещаются приблизительно 0.6Nd + 0.4Zr, а в точке пересечения осей 2 и 3 (позиция M(2)) размещаются атомы 0,1Nd + 0,9Zr. Обе позиции октаэдрически координированы атомами кислорода и имеют по шесть одинаковых расстояний М(1)-О и М(2)—О, равных 2,231(5) и 2,092(4) Å соответственно. Эти расстояния удовлетворительно согласуются с усредненными расстояниями (в принятой пропорции) Nd—O и Zr—O (оба атома с КЧ 6) в структурах [13, 14]. В результате согласования размеров ионных радиусов катионов и электронейтральности формулы приходим к следующему составу исследованного молибдата: $Rb_{4.7}Nd_{0.7}Zr_{1.3}(MoO_4)_6$, отличающемуся от стехиометрического состава. Октаэдрические позиции, статистически заполненные атомами циркония и неодима, приобретают избыток циркония и дефицит неодима. Рубидий, расположенный в крупных полостях, также находится в дефиците.

Низкозарядные щелочные катионы рубидия двух сортов расположены внутри крупных полиэдров. Атомы Rb(1) расположены на тройной оси внутри девятивершинников с тройками расстояний Rb—O, равными 2,902(5), 2,972(5) и 3,258(4) Å. Координационный полиэдр атома Rb(2), занимающего позицию на оси 2, составляют три пары более близких атомов O (Rb—O 2,937(5)—3,167(4) Å) и три пары более удаленных (Rb—O 3,368(5)—3,471(5) Å), в целом образующих 12-вершинник. Форма и размер Rb-полиэдров близки к таковым в ранее исследованных структурах [7, 9, 15].

Кристаллическая структура исследованного молибдата Rb_{4,7}Nd_{0,7}Zr_{1,3}(MoO₄)₆ представляет собой трехмерный смешанный каркас, состоящий из последовательно чередующихся Мо-тетра-

Смешанный каркас из тетраэдров MoO₄ и двух сортов октаэдров (Nd,Zr)O₆ в кристаллической структуре Rb_{4,7}Nd_{0,7}Zr_{1,3}(MoO₄)₆, проекция на плоскость (110). Заштрихованными кружками изображены атомы Rb

эдров и двух сортов октаэдров, соединенных друг с другом через общие О-вершины (см. рисунок). В больших полостях каркаса, который практически аналогичен рассмотренным ранее в [6—9, 15], размещаются два сорта катионов рубидия. Эти Rbполиэдры заполняют в структуре различным образом ориентированные каналы большого сечения, что обеспечивает условия для быстрого ионного транспорта катионов с подходящими ионными радиусами.

Работа поддержана Российским фондом фундаментальных исследований № 04-03-32714а и № 08-08-00958а.

СПИСОК ЛИТЕРАТУРЫ

- 1. Петьков В.И., Орлова А.И. // Неорган. материалы. 2003. 39, № 10. С. 1177.
- 2. Асабина Е.А., Петьков В.И., Гобечиг Е.Р. и др. // Журн. неорган. химии. 2008. 53, № 1. С. 45.
- 3. Базаров Б.Г., Клевцова Р.Ф., Базарова Ц.Т. и др. // Там же. 2006. 51, № 10. С. 1677.
- 4. Базаров Б.Г., Чимитова О.Д., Клевцова Р.Ф. и др. // Журн. структур. химии. 2008. 49, № 1. С. 58.
- 5. Чимитова О.Д., Базаров Б.Г., Клевцова Р.Ф. и др. // Изв. АН. Сер. хим. 2007. № 11. С. 2063.
- 6. Базаров Б.Г., Клевцова Р.Ф., Базарова Ц.Т. и др. // Журн. неорган. химии. 2005. 50, № 8. С. 1240.
- 7. Базаров Б.Г., Клевцова Р.Ф., Чимитова О.Д. и др. // Там же. 2006. 51, № 5. С. 866.
- 8. Романова Е.Ю., Базаров Б.Г., Клевцова Р.Ф. и др. // Там же. 2007. 52, № 5. С. 815.
- 9. Чимитова О.Д., Базаров Б.Г., Клевцова Р.Ф. и др. // Изв. АН. Сер. хим. 2007. № 11. С. 2063.
- 10. Sheldrick G.M. SHELXL-97. Programs for the Refinement of Crystal Structures. Germany, University of Goettingen, 1997.
- 11. Трунов В.К., Ефремов В.А., Великодный Ю.А. Кристаллохимия и свойства двойных молибдатов и вольфраматов. – Л.: Наука, 1986.
- 12. Shannon R.D. // Acta Crystallogr. 1976. A32. P. 751.
- 13. Hwang M.S., Hong H.Y.-P. // Ibid. 1987. C43. P. 1241.
- 14. Клевцова Р.Ф., Глинская Л.А., Пасечнюк Н.П. // Кристаллогр. 1977. 22, № 6. С. 1191.
- 15. Солодовников С.Ф., Балсанова Л.В., Базаров Б.Г. и др. // Журн. неорган. химии. 2003. **48**, № 7. С. 1197.