УДК 544.6.018.462.42; 544.6.018.47 DOI: 10.15372/KhUR2019132

Исследование фазового состава и электротранспортных свойств систем на основе одно- и двузамещенных фосфатов цезия и рубидия

В. Г. ПОНОМАРЕВА^{1,2}, И. Н. БАГРЯНЦЕВА^{1,2}, А. А. ГАЙДАМАКА^{1,2}

¹Институт химии твердого тела и механохимии Сибирского отделения РАН, Новосибирск(Россия)

E-mail: ponomareva@solid.nsc.ru

²Новосибирский государственный университет, Новосибирск (Россия)

Аннотация

Проведено подробное исследование фазового состава, транспортных и термодинамических характеристик систем на основе одно- и двузамещенных фосфатов цезия и рубидия $(1 - x)MH_2PO_4 / xM_2HPO_4 \cdot 2H_2O(M = Rb, Cs)$ в широком диапазоне составов (мольная доля $0 \le x \le 1$). Для исследованных систем выделены и идентифицированы новые образующиеся фазы, определены их транспортные и термические характеристики. В цезиевой системе при x = 0.5 обнаружено существование нового соединения $Cs_3(H_2PO_4)(HPO_4) \cdot 2H_2O$. Детально изучены условия образования этого соединения, синтезированы монокристаллы, впервые определены их кристаллическая структура, а также термодинамические характеристики и протонная проводимость. Показано, что полученное соединение не имеет фазовых переходов в суперионное состояние. В рубидиевой системе обнаружена монофазная область при x = 0.25, соответствующая соединению $Rb_5H_7(PO_4)_4$. Исследованы его электротранспортные и термодинамические свойства. Показано, что $Rb_5H_7(PO_4)_4$ имеет фазовый переход при 252 °C в высокотемпературную фазу, которая характеризуется высокой протонной проводимостью. При других значениях мольной доли x для $(1 - x)MH_2PO_4 / xM_2HPO_4 \cdot 2H_2O$ (M = Rb, Cs) реализуются двухфазные области, состоящие из исходного компонента, преобладающего в данной области составов, и образуется высокотемы.

Ключевые слова: одно- и двузамещенные фосфаты цезия и рубидия, $\operatorname{Rb}_5H_7(\operatorname{PO}_4)_4$, $\operatorname{Cs}_3(\operatorname{H}_2\operatorname{PO}_4)(\operatorname{HPO}_4) \cdot 2\operatorname{H}_2\operatorname{O}$, протонная проводимость, твердые электролиты

введение

Большинство кислых солей вида $M_x H_y (AO_4)_z$, где M = Cs, Rb, K, Na, Li, NH₄; A = S, Se, As, P, характеризуются наличием фаз со структурным разупорядочением сетки водородных связей, повышенной подвижностью протонов и высокой протонной проводимостью о вплоть до ~10⁻³– 10^{-2} См/см при 100–250 °C, сравнимой с проводимостью расплавов [1, 2], так называемых суперионных фаз. Соединение с наибольшей проводимостью – CsH₂PO₄ – перспективно для использования в качестве протонных мембран в среднетемпературных топливных элементах и других электрохимических устройствах [3]. Что касается родственных солей на основе двузамещенных фосфатов цезия и рубидия, то для них до последнего времени имелись не совсем корректные данные по составу кристаллогидратов и недостаточно полная характеристика физикохимических свойств, а кристаллические структуры были установлены лишь недавно [4–6]. В то же время изучение смешанных систем $(1 - x)MH_2PO_4 / xM_2HPO_4 \cdot 2H_2O$ (M = Rb, Cs) представляет фундаментальный научный интерес для установления взаимосвязи между структурными особенностями кристаллической решетки и параметрами переноса протона, что может служить основой для понимания механизма транспорта протона в кислых солях, целенаправленного регулирования функциональных свойств соединений и поиска новых высокопроводящих фаз.

Цель данной работы – анализ данных фазового состава в системе одно- и двузамещенных фосфатов цезия и рубидия $(1 - x)MH_2PO_4 / xM_2HPO_4 \cdot 2H_2O$ (M = Rb, Cs), сравнение электротранспортных и термодинамических свойств фаз, выявление и характеризация новых соединений. Статья является обобщением ряда работ, выполненных авторами по данной тематике.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединения $\rm MH_2PO_4$ и $\rm M_2HPO_4 \cdot 2H_2O~(M=Cs, Rb)$ получены медленным изотермическим испарением из водного раствора $\rm M_2CO_3$ (квалификации "ч.") и $\rm H_3PO_4$ (квалификация "х. ч.") при комнатной температуре по реакциям

$$\begin{split} & \operatorname{M_2CO_3} + 2\operatorname{H_3PO_4} \rightarrow 2\operatorname{MH_2PO_4} + \operatorname{CO_2} + \operatorname{H_2O} (1) \\ & \operatorname{M_2CO_3} + \operatorname{H_3PO_4} + \operatorname{H_2O} \rightarrow \operatorname{M_2HPO_4} \cdot 2\operatorname{H_2O} + \operatorname{CO_2} (2) \end{split}$$

Синтезированные одно- и двузамещенные фосфаты (1-x)МH₂PO₄ / xM₂HPO₄ · 2H₂O с различным мольным соотношением компонентов (0 ≤ x ≤ 1) тщательно перетирали в агатовой ступке, прессовали и прогревали в течение ~4 ч при 55-60 °C. Температуру прогрева выбирали в соответствии с термическими свойствами исходных солей и температурой потери кристаллогидратной воды в М₂НРО₄ · 2H₂O. Эксперимент проводили с использованием методов рентгенофазового анализа на приборе D8 Advance (Bruker, Германия), дифференциального термического анализа на термоанализаторе STA 449 F/1/1 JUPITER (Netzsch, Германия), инфракрасной спектроскопии на приборе Excalibur 3100 (DigiLab, USA) и импедансной спектроскопии на приборе ИПУ-1 (Россия, рабочий диапазон частот 1 мГц – 3.3 МГц). Элементный состав определяли методом энергодисперсионной рентгеновской спектроскопии с помощью микроскопа Hitachi TM-1000 (Япония), оборудованного спектрометром INCA Energy XMax. Для измерения проводимости из смеси с определенным соотношением компонентов были изготовлены образцы в виде таблеток (диаметр 7 мм, толщина 2-3 мм, относительная плотность 96-98 %) путем прессования при 300 МПа и нанесения серебряных электродов. Для подавления дегидратации измерения проводимости рубидиевых

образцов проводили при высоких температурах в увлажненном потоке аргона, пропускаемом через барботер (T = 70-80 °C), что соответствовало парциальному давлению паров воды $P_{\rm H_{2}O} \approx 0.3-0.56$ атм. Скорость потока фиксировали с помощью регулятора газовых смесей УФПГС. Скорость нагрева-охлаждения составляла 1 °C/мин.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для солей ${\rm CsH_2PO_4}$ и ${\rm RbH_2PO_4}$ обнаружены переходы в так называемые суперионные фазовые состояния при 230 и 276 °C соответственно (рис. 1–3), в то время как для калиевой и натриевой соли таковых нет [7, 8]. Фазовый переход в ${\rm CsH_2PO_4}$ из моноклинной (${\rm P2_1}/m$) фазы в суперионную кубическую (${\rm Pm}$ -3m) при 230 °C приводит к структурному разупорядочению протонов, росту подвижности и увеличению проводимости до 6 \cdot 10⁻² См/см благодаря участию протонов в процессе переноса. Суперионная фаза ${\rm CsH_2PO_4}$ имеет достаточно узкий температурный интервал стабильности вследствие процесса дегидратации, что затрудняет ее практическое использование.

Аналогичным фазовым перестройкам, но при более высоких температурах подвергается соединение RbH, PO,. Его суперионная фаза существует в более узком интервале температур из-за различий в размерах катионов ($R_{
m Cs+}$ = 1.74 Å и R_{вь+} = 1.61 Å) [9]. Кислые соли характеризуются наличием системы водородных связей, которые для исследуемых систем являются достаточно сильными, длиной 2.4-2.6 Å. В соответствии с этим в низкотемпературной области наблюдаются достаточно высокие энергии активации (~0.9-1.1 эВ) и низкая протонная проводимость (менее 10^{-6} См/см). При комнатной температуре RbH₉PO₄ существует в виде тетрагональной фазы I-42d, которая при 90— 130 °С переходит в моноклинную P2,/a; температура перехода зависит от термодинамических условий эксперимента. Фаза $P2_{_1}/a$ стабильна до 250 °C в нормальных условиях, далее вплоть до 320 °C происходит медленная дегидратация с образованием Rb,H,P,O, [10], что затрудняет исследование характеристик соли в суперионном состоянии. В соответствии с фазовой диаграммой для расширения температурного диапазона изучение суперионной фазы проводят при создании повышенного давления либо повышенной влажности, в частности, парциальном давлении паров воды ~0.56 атм. Методами

Рис. 1. Данные дифференциальной сканирующей калориметрии (*a*) и термогравиметрии (б) для солей состава (1 - x)СsH₂PO₄ / xCs₂HPO₄ · 2H₂O, где мольная доля x = 0 (1), 0.5 (2), 1 (3).

порошковой дифракции и импедансметрии при повышенном давлении ~1 ГПа установлено, что высокотемпературная фаза $\mathrm{RbH_2PO_4}$ относится также к кубической сингонии Pm-3m [11, 12].

Установлено, что в отличие от дигидрофосфатов, двузамещенные фосфаты цезия и рубидия не имеют суперионных фазовых переходов (см. рис. 1–3) [13]. Показано, что из водных растворов они кристаллизуются в виде дигидратов, имеющих моноклинную сингонию $P2_1/c$. Так, установлено, что параметры элементарной ячейки Cs₂HPO₄ · 2H₂O составляют: a = 7.4764 Å, b = 14.1898 Å, c = 7.9535 Å, $\beta = 116.880$ Å, Z = 4 [4]. Показано, что $\text{Rb}_2\text{HPO}_4 \cdot 2\text{H}_2\text{O}$ изоструктурен $\text{Cs}_2\text{HPO}_4 \cdot 2\text{H}_2\text{O}$. Его структурные характеристики, а также данные для других солей представлены в табл. 1.

Несмотря на изоструктурность $\mathrm{Rb_2HPO_4} \cdot 2\mathrm{H_2O}$ и $\mathrm{Cs_2HPO_4} \cdot 2\mathrm{H_2O}$, их термические (см. рис. 1, 2) и электротранспортные (см. рис. 3) свойства различаются. Дегидратация $\mathrm{Rb_2HPO_4} \cdot 2\mathrm{H_2O}$, в отличие от $\mathrm{Cs_2HPO_4} \cdot 2\mathrm{H_2O}$, начинается при 55 °C и характеризуется двумя близкими по скорости стадиями. После потери кристаллоги-

ТАБЛИЦА 1	
Структурные данные для одно- и двузамещенных фосфатов цезия и рубид	ия, $\mathrm{Rb}_{5}\mathrm{H}_{7}(\mathrm{PO}_{4})_{4}$ и $\mathrm{Cs}_{3}(\mathrm{H}_{2}\mathrm{PO}_{4})(\mathrm{HPO}_{4})\cdot 2\mathrm{H}_{2}\mathrm{O}.$

	ПГС	a, Å	b, Å	c, Å	β, °	Ζ	ссылка
CsH_2PO_4	$P2_1/m$	4.8725	6.3689	7.9007	107.742	2	[14]
RbH_2PO_4	I-42 d	7.607	7.607	7.299	-	4	[15]
$\rm Cs_2HPO_4\cdot 2H_2O$	$P2_1/c$	7.4764	14.1898	7.9535	116.880	4	[4, 5]
$\rm Rb_2HPO_4\cdot 2H_2O$	$P2_1/c$	7.3640	13.6496	7.7341	118.176	4	[4]
$Rb_5H_7(PO_4)_4$	Pnam	28.570	10.277	6.090	-	4	[16]
$\mathrm{Cs}_3(\mathrm{H_2PO}_4)(\mathrm{HPO}_4) \cdot 2\mathrm{H_2O}$	Pbca	7.4721	11.4369	14.8509	-	4	[17]
CsH_2PO_4	$P2_1/m$	4.8725	6.3689	7.9007	107.742	2	[14]

Прим. Прочерк означает, что данные не известны.

Рис. 2. Данные дифференциальной сканирующей калориметрии (*a*) и термогравиметрии (б) для солей состава (1 - x)RbH₂PO₄ / xRb₂HPO₄ · 2H₂O, где мольная доля x = 0 (1), 0.25 (2), 1 (3).

дратной воды при дальнейшем нагреве солей M_2HPO_4 (M = Cs, Rb) образуется пирофосфат $M_4P_2O_7$. Потеря массы вследствие выделения молекул воды в ходе нагревания полностью со-

ответствует теоретическим значениям стадий дегидратации (рис. 1, б, 2, б). Интервал стабильности образуемой соли $\rm Rb_2HPO_4$ на 70 °C меньше, чем для $\rm Cs_2HPO_4;$ последняя устойчива

Рис. 3. Температурные зависимости протонной проводимости σ (См/см) при влажности 0.56 атм солей Cs (a): Cs₂HPO₄ · 2H₂O – нагрев (1) и охлаждение (2); CsH₂PO₄ – охлаждение (3), Cs₃(H₂PO₄)(HPO₄) · 2H₂O – охлаждение (4); и солей Rb (6): Rb₅H₇(PO₄) – нагрев (1) и охлаждение (2), Rb₂HPO₄ · 2H₂O – нагрев (3) и охлаждение (4), RbH₂PO₄ – охлаждение (5).

вплоть до 320 °C. Различие в термической устойчивости солей, вероятно, связано с разницей ионных радиусов рубидия и цезия, что приводит к изменению длины и прочности связей.

Значения протонной проводимости дегидратированных солей M₂HPO₄ (M = Cs, Rb) в диапазоне температур 100-250 °C близки и составляют 10⁻⁸-10⁻⁴ См/см с высокой энергией активации ~1.2 эВ (см. рис. 3), что связано с наличием у соединений сильных водородных связей [5]. При исследовании систем (1-x)МH₂PO₄ / xM₂HPO₄ · 2H₂O (M = Rb, Cs) в широком диапазоне составов были выделены монофазная и двухфазная области. Новые образующиеся фазы были идентифицированы, определены их электротранспортные и термические характеристики. Так, в цезиевой системе выявлена монофазная область при x = 0.5, соответствующая существованию нового, ранее не известного соединения состава Cs₃(H₂PO₄)(HPO₄) · 2H₂O (рис. 4, *a*). Определены условия роста монокристаллов, детально исследован элементный состав и содержание кристаллогидратной воды в Cs₃(H₂PO₄)(HPO₄) · 2H₂O и впервые утановлена кристаллическая структура (рис. 5). Показано, что соединение кристаллизуется в пространственной группе Pbca и характеризуется трехмерной сеткой водородных связей, в образование которой, помимо фосфатных тетраэдров, вовлечены две кристаллографически эквивалентные молекулы воды. Для Cs₃(H₂PO₄)(HPO₄) · 2H₂O характерна эквивалентность РО₄-тетраэдров. Данное соединение, аналогично Cs₂HPO₄ · 2H₂O, не имеет суперионных фаз, а характер зависимости протонной проводимости, ее значения и энергия активации в циклах нагрев – охлаждение близки для двух солей (см. рис. 3, а). Дегидратация соединения с потерей двух молекул воды происходит при 75-160 °C с образованием Cs₂(H₂PO₄)(HPO₄), который стабилен до 275 °С (см. рис. 1), а затем полностью превращается в пирофосфат и метафосфат цезия, Cs₄P₂O₇ и CsPO₃. Определены параметры элементарной ячейки образуемой безводной фазы Cs₃(H₂PO₄)(HPO₄). Показано, что она принадлежит к моноклинной пространственной группе С2 с параметрами элементарной ячейки a = 11.1693 Å, b = 6.4682 Å, c = 7.7442 Å и β = 71.822 [17]. В отличие от кристаллогидрата $Cs_3(H_3PO_4)(HPO_4) \cdot 2H_3O$, дегидратированная форма имеет низкие значения электропроводности: (6 · 10⁻⁶) – 10⁻⁸ См/см при 100-220 °С с энергией активации 0.91 эВ, что согласуется с наличием сильных водородных связей по данным ИК-спектроскопии (рис. 6). Так, для

кислых фосфатов в области валентных и деформационных колебаний ОН-групп, вовлеченных в водородные связи, наблюдаются три широкие полосы поглощения, соответствующие, как правило, связи О^{...}О с длиной 2.4–2.6 Å. Для $Cs_3(H_2PO_4)(HPO_4) \cdot 2H_2O$ положение максимумов соответствует 2790, 2350 и 1745 см⁻¹ (см. рис. 6). В ИК-спектрах кристаллогидратов этих солей обычно имеется также широкая полоса поглощения в области ~3000 см⁻¹, связанная с валентными колебаниями молекул структурной воды, участвующих в образовании сетки водородных связей (см. рис. 6) [18, 19].

Исследование системы в широком диапазоне составов показало, что помимо монофазной области при x = 0.5 имеются двухфазные области при $x \neq 0.5$, соответствующие при x < 0.5 содержанию солей CsH_2PO_4 и $Cs_3(H_2PO_4)(HPO_4) \cdot 2H_2O_4$ с различным соотношением компонентов, а при $x > 0.5 - Cs_2HPO_4 \cdot 2H_2O$ и $Cs_3(H_2PO_4)(HPO_4) \cdot 2H_2O$. По существу, данные диапазоны составов можно рассматривать как композиционные системы, на термические и электротранспортные свойства которых существенное влияние оказывает образуемая новая фаза Cs₃(H₂PO₄)(HPO₄) · 2H₂O. Показано, что для композиционных систем при x < 0.5 в области существования CsH_2PO_4 и Cs₃(H₂PO₄)(HPO₄) · 2H₂O характерна высокая протонная проводимость с суперионным фазовым переходом. Методом импедансной спектроскопии установлено, что для цезиевой системы при x ≤ 0.1 низкотемпературная проводимость возрастает на 3—5 порядков. При температурах $60-220\ ^{\circ}\mathrm{C}$ она достигает значений $10^{-2}-10^{-4}\ \mathrm{Cm/cm},$ что связано с композитным эффектом на основе двух родственных солей, структурным разупорядочением на границе раздела фаз с высокой подвижностью протона [20]. Кроме того, протоны молекул кристаллогидратной или адсорбированной воды также могут принимать участие в процессе переноса, внося вклад в повышение проводимости системы.

В ходе исследования рубидиевой системы в широком диапазоне составов ($0 \le x \le 1$) обнаружена монофазная область при x = 0.25, соответствующая соединению $\operatorname{Rb}_{5}H_{7}(\operatorname{PO}_{4})_{4}$ (см. рис. 4, б) [21] – единственному известному представителю семейства кислых солей со стехиометрией $\operatorname{M}_{5}H_{7}(\operatorname{AO}_{4})_{4}$. До недавнего времени были известны только структурные характеристики данной соли, в то же время информация о термодинамических свойствах и проводимости отсутствовала. К этой же группе можно отнести и известные двойные фосфаты, $\operatorname{Ca}_{2}\operatorname{KH}_{7}(\operatorname{PO}_{4})_{4} \cdot \operatorname{2H}_{2}O$ [22]

Рис. 4. Рентгенограммы солей Cs (a) и Rb (б). Для сравнения приведены теоретические штрих-рентгенограммы $Cs_3(H_2PO_4)(HPO_4) \cdot 2H_2O$ (a) и Rb₅H₇PO₄)₄ (б).

Рис. 5. Схематическое изображение кристаллической структуры $Cs_3(H_2PO_4)(HPO_4) \cdot 2H_2O.$

и Ca₂(NH₄)H₇(PO₄)₄ · 2H₂O [23], но эти соединения сильно отличаются по своему строению от Rb₅H₇(PO₄)₄: обе Са-содержащие соли являются кристаллогидратами и кристаллизуются в триклинной сингонии, тогда как $\mathrm{Rb}_5\mathrm{H}_7(\mathrm{PO}_4)_4$ относится к ромбической сингонии. Другие составы исследованной системы соответствуют двухфазной области и существованию солей исходных составов наряду с Rb₅H₇(PO₄)₄ в различных соотношениях: RbH₂PO₄ и Rb₅H₇(PO₄)₄ (x < 0.25) или $\operatorname{Rb}_{2}\operatorname{HPO}_{4} \cdot 2\operatorname{H}_{2}O$ и $\operatorname{Rb}_{5}\operatorname{H}_{7}(\operatorname{PO}_{4})_{4}(x \stackrel{*}{>} 0.25)$ [21]. Следует отметить, что протонная проводимость рубидиевых солей различных составов ниже, чем аналогичных соединений цезиевой системы. Впервые показано, что $\mathrm{Rb}_{5}\mathrm{H}_{7}\mathrm{(PO}_{4}\mathrm{)}_{4}$ претерпевает обратимый фазовый переход при ${}^{\star}T_{\phi\pi}^{\star} \sim 237~^{\circ}C$ [24]. Интервал стабильности высокотемпературной фазы составляет около 15 °C. Согласно данным термического анализа, при обычной влажности происходит медленное разложение соли, связанное с дегидратацией, начинающейся при 200 °С.

Рис. 6. Данные ИК-спектроскопии для областей водородных связей (*a*) и фосфатных тетраэдров (б): $1 - \text{Rb}_5\text{H}_7(\text{PO}_4)_4$, $2 - \text{CsH}_2\text{PO}_4$, $3 - \text{Cs}_3(\text{H}_2\text{PO}_4)(\text{HPO}_4) \cdot 2\text{H}_2\text{O}$, $4 - \text{Cs}_2\text{HPO}_4 \cdot 2\text{H}_2\text{O}$.

В условиях высокой относительной влажности газовой среды ($P_{\rm H_{2}O} \approx 0.56$ атм) можно подавить частичную дегидратацию соли и наблюдать фазовый переход. В области температур 240 °С он сопровождается резким увеличением проводимости до 10⁻² См/см – так называемый суперионный фазовый переход (см. рис. 2, 3, б). Показано, что обратный переход Rb₅H₇(PO₄)₄ является замедленным, что, вероятно, связано со структурной перестройкой. Для Rb₂H₇(PO₄)₄ проявляется значительный гистерезис, характерный для кислых солей. Проводимость в низкотемпературной фазе не превышает 10^{-5} См/см при T < 237 °С, что согласуется с данными ИК-спектроскопии, свидетельствующими о наличии сетки сильных водородных связей в структуре. Кроме того, в области ИК-спектра, соответствующей колебаниям фосфатных тетраэдров, для Rb₅H₇(PO₄)₄, в отличие от других рубидиевых и цезиевых солей, наблюдается расщепление трех интенсивных полос $\nu_{\rm PO} \sim$ 850, 1090 см $^{-1}$ и $\delta_{\rm OH} \sim$ 1260 см $^{-1}$ (см. рис. 6), что свидетельствует об отклонении тетраэдров от идеальной формы и неэквивалентности фосфатных тетраэдров в кристаллической структуре соединения [25].

ЗАКЛЮЧЕНИЕ

Таким образом, проведен анализ фазового состава, транспортных и термодинамических характеристик систем на основе одно- и двузамещенных фосфатов цезия и рубидия (1 - x) $MH_{2}PO_{4} / xM_{2}HPO_{4} \cdot 2H_{2}O$ (M = Rb, Cs) в широком диапазоне составов (0≤ x ≤1). Для исследованных систем обнаружены новые, ранее не известные фазы, определена их протонная проводимость и термические характеристики. В цезиевой системе впервые обнаружено новое соединение $Cs_3(H_3PO_4)(HPO_4) \cdot 2H_3O$ при x = 0.5 и определена его кристаллическая структура, термодинамические характеристики и протонная проводимость. В рубидиевой системе при x = 0.25обнаружено соединение Rb₅H₇(PO₄)₄, анализ термодинамических и электротранспортных свойств которого при повышенной влажности показал наличие обратимого суперионного фазового перехода при 252 °C. При других значениях x фазовый состав (1 - x)MH₂PO₄ / xM₂HPO₄ · 2H₂O (M = Rb, Cs) соответствует образованию композитов на основе двух солей: исходного компонента, преобладающего в данной области составов, и нового соединения, определяющего физико-химические свойства системы.

Работа выполнена в рамках государственного задания ИХТТМ СО РАН (проект 0301-2019-0001).

СПИСОК ЛИТЕРАТУРЫ

- 1 Баранов А. И., Шувалов Л. А., Щагина Н. М. // Письма в ЖЭТФ. 1982. Т. 36. С. 381–384.
- 2 Баранов А. И. // Кристаллография. 2003. Т. 48. С. 1081–1107.
- 3 Boysen D. A., Uda T., Chisholm C. R. I., Haile S. M. // Science. 2004. Vol. 303. P. 68–70.
- 4 Stoger B., Weil M. // Acta Crystallogr. C. 2014. Vol. 70. P. 7–11.
- 5 Лаврова Г. В., Булина Н. В., Миньков В. С., Матвиенко А. А. // Журн. неорг. химии. 2016. Т. 61 С. 300-306.
- 6 Пономарева В. Г., Багрянцева И. Н., Лаврова Г. В. // Электрохимия. 2017. Т 53. С. 83–88.
- 7 Baranov A. I., Kniznichenko V. P., Sandler V. A., Shuvalov L. A. // Ferroelectrics. 1988. Vol. 81. P. 183-186.
- 8 Li Z., T. Tang // Thermochimica Acta. 2010. Vol. 501. P. 59–64.
- 9 Boysen D. A. Superprotonic Solid Acids: Structure, Properties and Applications. (Degree of Doctor of Philosophy), Pasadena, California Institute of Technology, 2004. 172 p.
- 10 Botez C. E., Martinez H., Tackett R. J., Chianelli R. R., Zhang J., Zhao Y. // J. Phys. Condens. Matter. 2009. Vol. 21. P. 325401.
- 11 Boysen D. A., Haile S. M., Liu H., Secco R. A. // Chem. Mater. 2004. Vol. 16. P. 693-697.
- 12 Botez C. E., Tackett R. J., Hermosillo J. D., Zhang J., Zhao Y., Wang L. // Solid State Ionics. 2012. Vol. 213. P. 58–62.
- 13 Gaydamaka A. A., Bagryantseva I. N., Ponomareva V. G. // Journal of Thermal Analysis and Calorimetry. 2018. Vol. 133. P. 1121–1127.
- 14 Uesu Y., Kobayashi J. // Physica Status Solidi A: Applied Research. 1976. Vol. 34. P. 475–481.
- 15 Kennedy N. S. J., Nelmes R. J. // J. Phys. C: Solid State Phys. 1980. Vol. 13, No. 26. P. 4841–4853.
- 16 Averbuch-Pouchot M. T., Durif A. // Acta Cryst. C. 1985. Vol. 41. P. 665-667.
- 17 Ponomareva V., Bagryantseva I., Zakharov B., Bulina N., Lavrova G., Boldyreva E. // Acta Cryst C. 2017. Vol. 73. P. 773-779.
- 18 Marchon B., Novak A. // J. Chem. Phys. 1983. Vol. 78. P. 2105–2120.
- 19 Baran J., Lis T., Ratajczak H. // J. Mol. Struct. 1989. Vol. 195. P. 159-174.
- 20 Ponomareva V. G., Bagryantseva I. N. // Solid State Ionics. 2019. Vol. 329. P. 90–94.
- 21 Gaydamaka A. A., Ponomareva V. G., Bagryantseva I. N. // Solid State Ionics. 2019. Vol. 329. P. 124–130.
- 22 Prince B. Y. E, Takagi S., Mathew M., Brown W. E. // Acta Cryst. C.1984. Vol. 2. P. 1499–1502.
- 23 Matthew M, Brown W. E. // Acta Cryst. B. 1980. Vol. 36. P. 766-771.
- 24 Gaydamaka A. A., Ponomareva V. G., Bagryantseva I. N. // Ionics. 2019. Vol. 25. P. 551–557.
- 25 Ratajczak H., Mielke Z. // J Mol. Struct. 1968. Vol. 1. P. 397-401.