УДК 546.82;546.742;544.427

РЕЖИМЫ ГОРЕНИЯ СМЕСЕЙ ОКСИДА НИКЕЛЯ (II) С ТИТАНОМ

Ю. М. Михайлов¹, В. В. Алёшин¹, А. В. Бакешко¹, В. И. Вершинников², Т. И. Игнатьева², Д. Ю. Ковалёв²

¹Институт проблем химической физики РАН, 142432 Черноголовка, bav@icp.ac.ru

²Институт структурной макрокинетики и проблем материаловедения им. А. Г. Мержанова РАН 142432 Черноголовка, vervi@ism.ac.ru

Изучено влияние соотношения компонентов смесей оксида никеля (II) с титаном на режимы и скорость горения составов на их основе. Установлено, что в нормальных условиях при изменении массового содержания оксида никеля от 75 до 30 % происходит закономерная смена режимов горения: огненный факел, многоочаговый режим и автоколебательный режим с периодическим срывом продуктов горения с горящей поверхности. Показано, что максимальная скорость горения таких смесей (82 мм/с) достигается при равном массовом соотношении оксида никеля и

титана. В конденсированных продуктах горения смеси оксида никеля с титаном идентифицированы интерметаллид Ti_2Ni и двойной оксид $Ni_2Ti_4O_x$.

Ключевые слова: оксид никеля, титан, смесь, горение, режимы.

DOI 10.15372/FGV20210407

ВВЕДЕНИЕ

Интерметаллиды системы Ti—Ni отличаются уникальными физическими и механическими свойствами. Они имеют хорошую ковкость, демпфируют вибрации, устойчивы к коррозии и обладают свойством памяти формы, что позволяет использовать их для различных практических целей [1]. Одним из способов получения таких интерметаллидов является самораспространяющийся высокотемпературный синтез (СВС) порошковых смесей металлов, проходящий в результате экзотермической реакции Ti + Ni [2]. В то же время определенный интерес представляет использование интерметаллидов в качестве матрицы для создания композиционных материалов. Так, в результате горения смеси оксида никеля с алюминием и титаном были получены композиционные материалы на основе интерметаллидов системы Ni—Al и Al₂O₃ с высоким уровнем механических и термических свойств [3].

Вместе с тем в опубликованных работах не обнаружено сведений о возможности получения композиционных материалов в реакции термитного типа в порошковых смесях TiNiO. Предполагается, что в результате горения таких смесей в зависимости от соотношения компонентов могут быть получены композиционные материалы с интерметаллидной матрицей и частицами оксидной фазы.

Целью настоящей работы было изучение влияния соотношения Ti/NiO в исходной порошковой смеси на режим и скорость горения, а также оценка возможности получения композиционных материалов на основе никелидов титана и оксида титана.

ЭКСПЕРИМЕНТ

В качестве исходных компонентов смеси использовался порошок NiO марки «ч» со средним размером частиц $10 \div 20$ мкм и удельной поверхностью 0.54 м²/г и порошок Ti, полученный по технологии CBC, со средним размером частиц $1 \div 5$ мкм и удельной поверхностью 21.8 м²/г [4]. В качестве инициирующего состава использовали смесь MoO₃ марки «чда» и наноразмерного порошка Al марки «Alex».

Состав смеси Ті—NiO варьировали от 20 до 80 % NiO с шагом 5 %. Исходные компоненты, взятые в заданном соотношении, смешивали в механическом смесителе в течение 30 мин. Из полученной смеси на гидравлическом прессе под давлением 500 МПа формировали цилиндрические образцы диаметром 10 мм, высотой ≈10 мм, массой ≈3 г. На верхний торец

Работа выполнена по теме государственного задания (номер гос. регистрации АААА-А19-119101690058-9).

[©] Михайлов Ю. М., Алёшин В. В., Бакешко А. В., Вершинников В. И., Игнатьева Т. И., Ковалёв Д. Ю., 2021.

образца устанавливалась таблетка с инициирующим составом MoO₃—Al диаметром 8 мм и массой ≈ 0.2 г. Эксперименты проводили на воздухе. Горение инициировали красным лазером Pl650-7 JSHFEI мощностью 1000 мВт под углом 30° от торца образца с расстояния 0.5 м.

Видеосъемку горения проводили камерой FastVideo-400 (НПО «Астек») с расстояния 0.3 м со скоростью 400 кадр/с при диафрагме 8 и программируемой экспозиции 10 мс. Время сгорания образца определяли по числу видеокадров между моментами начала и завершения горения.

Образцы с соотношением компонентов, близким к стехиометрическому, горят на воздухе с образованием яркого пламени, что затрудняет регистрацию процесса на видеокамеру. В этих случаях образцы сжигались в специальном металлическом реакторе горения [5], а вылетающие из него светящиеся раскаленные частицы фиксировались видеокамерой с расстояния 3 м. Время горения определяли по числу видеокадров между моментами возникновения и исчезновения огненного факела.

Рентгенофазовый анализ продуктов горения образцов проводили на дифрактометре ДРОН-3М (Си K_{α} -излучение, Ni-фильтр). При расшифровке дифрактограмм использовалась база данных ICDD PDF2.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Предполагалось, что в зависимости от соотношения компонентов и в соответствии с фазовой диаграммой системы Ni — Ti [6] в составе конденсированных продуктов, кроме диоксида титана, могут быть получены интерметаллиды Ti₂Ni, TiNi, TiNi₃. Зависимости плотности (d) и пористости (P) образцов, режима и линейной скорости их горения (u) от соотношения оксида никеля и титана представлены на рис. 1.

С уменьшением содержания оксида никеля в исходной смеси от 80 до 20 % плотность образцов линейно уменьшается от 3.54 до 2.58 г/см³, а пористость образца незначительно возрастает с 43 до 48 % (таблица).

Верхний концентрационный предел горения по NiO больше 75 %. На этом пределе горение образцов протекает со скоростью 14.4 мм/с в очаговом режиме с частичным образованием брызг расплавленных продуктов реакции. При уменьшении содержания NiO в исходной смеси горение таких смесей переходит в факельный

Рис. 1. Зависимости плотности, пористости и скорости горения экспериментальных образцов от содержания NiO в смеси Ti—NiO

режим, который ранее наблюдался при горении смесей титана с оксидом меди [5]. Размеры факела достигают максимума при горении смесей с содержанием NiO около 50 %. Именно при этом соотношении исходных компонентов достигается максимальная скорость горения — 82.1 мм/с. Дальнейшее уменьшение содержания NiO в исходной смеси приводит к уменьшению скорости горения до 29.1 мм/с на нижнем концентрационном пределе при 30 % NiO. Вместе с тем при содержании NiO в смеси менее 45 % факельный режим горения сменяется многоочаговым, который, в свою очередь, на нижнем пределе горения протекает в автоколебательном режиме. После прогорания примерно 1÷2 мм высоты образца продукты горения внезапно с резким звуком отлетают от несгоревшей части. После этого горение медленно возобновляется до следующего отделения сгоревшей части образца. Такой же режим горения наблюдался ранее в смесях титана с оксидом меди [5]. При содержании NiO в смеси менее 30 % горение образца прекращалось после одного из отрывов сгоревшей части, а при содержании оксида никеля в смеси 20 % горение прекращалось после первого же отрыва после инициирования. Очевидно, что отделение продуктов синтеза от исходной смеси существенно нарушает условия стационарного горения и свидетельствует о наличии повышенного газового давления внутри образца.

№ п/п	NiO, %	d, г/см ³	P, %	u, мм/с	Режимы горения
1	80	3.54	43	0	Не горит
2	75	3.48	43	14.4	Факел слабый. Немного искр
3	70	3.44	43	39.9	Факел слабый. Немного искр
4	65	3.44	42	33.4	Факел средний. Много искр
5	60	3.31	43	59.7	Факел большой. Много искр
6	55	3.24	43	52.6	Факел большой. Много искр
7	50	3.10	45	82.1	Факел большой. Много искр
8	45	2.97	46	60.4	Факел большой. Немного искр. Есть остаток
9	40	2.97	45	75.0	Очаговое горение. Остаток — расплав
10	35	2.89	45	55.0	Очаговое горение. Остаток сохранил форму
11	30	2.83	45	29.1	Очаговое горение. Остаток расслаивается
12	25	2.63	48		Горело неравномерно. Отслаивание продуктов при отрыве. Не догорело
13	20	2.58	48		Горение прекратилось после первого отрыва

Влияние соотношения Ti—NiO на плотность, пористость образца, линейную скорость и режимы горения смесей

Рис. 2. Дифрактограмма продуктов горения смес
и55~% Ті—45~% NiO

Рентгеновская дифрактограмма продуктов горения смеси, содержащей 45 % NiO, представлена на рис. 2. Основными фазами продукта являются интерметаллид Ti_2Ni и сложный оксид $Ni_2Ti_4O_x$.

Таким образом, в результате горения получен композиционный материал Ti_2Ni — Ni_2Ti_4O , в интерметаллидной матрице которого распределены частицы оксидной фазы. Известно, что наличие двойного оксида $Ni_2Ti_4O_x$ в сплавах TiNi с памятью формы существенно влияет на их механические и функциональные свойства [7].

ЗАКЛЮЧЕНИЕ

При нормальных условиях порошковые смеси Ti—NiO устойчиво горят на воздухе, если содержание NiO в них находится в интервале 30÷75%. Показано, что плотность образцов линейно увеличивается с ростом содержания более тяжелого оксида никеля в исходной смеси, при этом их пористость незначительно уменьшается.

Зависимость скорости горения от соотношения компонентов смеси имеет немонотонный вид, а максимальная скорость горения (82.1 мм/с) достигается при содержании NiO в смеси около 50 %.

С уменьшением содержания NiO в смеси зафиксирована закономерная смена режимов горения: огненный факел, многоочаговый и, на нижнем концентрационном пределе, автоколебательный режим с периодическим отрывом продуктов горения.

В продуктах горения смеси оксида никеля и титана идентифицированы кристаллические фазы Ti_2Ni и $Ni_2Ti_4O_x$. Таким образом, доказана принципиальная возможность получения композиционного материала в виде интерметаллидной матрицы, содержащей частицы сложного оксида непосредственно в результате восстановления оксида никеля титаном.

ЛИТЕРАТУРА

- Igharo M., Wood J. V. Compaction and sintering phenomena in titanium-nickel shape memory alloys // Powder Metall. — 1985. — N 28. — P. 131–139.
- Zhu H. X., Abbaschian R. In-situ processing of NiAl-alumina composites by thermite reaction // Mater. Sci. Eng. — 2000. — N A282. — P. 1–7.
- Yin L., Xiaonan F., Mingxu. Z. Chemical reaction of in-situ processing of NiAl/Al₂O₃ composite by using thermite reaction // J. Wuhan Univ. Technol., Mater. Sci. Ed. — 2005. — N 20. — P. 90–92.

- Vershinnikov V. I., Ignat'eva T. I., Aleshin V. V., Mikhailov Yu. M. Fine Ti powders through metallothermic reduction in TiO₂—Mg— Ca mixtures // Int. J. Self-Propag. High-Temp. Synth. — 2018. — V. 27, N 1. — P. 55-59.
- Михайлов Ю. М., Алешин В. В., Вершинников В. И., Игнатьева Т. И. Особенности горения смесей оксида меди и титана // Физика горения и взрыва. — 2018. — Т. 54, № 1. — С. 33–38. — DOI 10.15372/FGV20180106.
- 6. **Хансен М.** Структура двойных сплавов: в 2 т. М.: Металлургия, 1962.
- Kai W., Changa K. C., Wub H. F., Chenc S. W., Yeh A. C. Formation mechanism of Ni₂Ti₄O_x in NITI shape memory alloy // Materialia. — 2019. — N 5. — 100118.

Поступила в редакцию 31.07.2020. Принята к публикации 28.10.2020.