УДК 536.46+662.612+534.2

МОДОВАЯ УСТОЙЧИВОСТЬ ЦИЛИНДРИЧЕСКОГО ФРОНТА ПЛАМЕНИ В КОЛЬЦЕВОЙ КАМЕРЕ СГОРАНИЯ ПРИ НАЛИЧИИ ВОЛН ЭНТРОПИИ

А. В. Трилис

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск, trilisartie@yandex.ru

Проведено моделирование и установлены особенности начального (линейного) этапа развития вращающихся поперечных детонационных волн в плоскорадиальной кольцевой камере сгорания. Решена возникающая на данном этапе задача линейной модовой устойчивости цилиндрического фронта дефлаграционного горения Чепмена — Жуге в радиально расходящемся дозвуковом потоке с малым числом Маха при наличии волн возмущения энтропии потока. Стационарный фронт пламени описывается разрывом газодинамических параметров при условии, что продукты сгорания находятся в химическом равновесии. Обнаружено, что фронт пламени неустойчив для некоторых типов малых возмущений основного потока горючей смеси и фронта пламени. Обнаружена неустойчивость при условии постоянного расхода в системе подачи смеси. Численноаналитическими методами получены пространственные формы колебаний и волн возмущения фронта горения в кольцевой камере сгорания.

Ключевые слова: непрерывная спиновая детонация, нормальная скорость пламени, дефлаграционное горение, устойчивость фронта горения, квазисобственные частоты, волны энтропии.

DOI 10.15372/FGV20210404

ВВЕДЕНИЕ

Идея сжигания смеси в режиме детонации для создания двигателей, использующих энергию горения, появилась более пятидесяти лет назад. Б. В. Войцеховский был первым, кто предложил сжигать смесь в режиме непрерывной детонации с помощью поперечных вращающихся волн (например, поперечной волны спиновой конфигурации [1, 2]). Он впервые реализовал данную идею на практике [3, 4] в плоскорадиальной кольцевой камере сгорания при радиальной подаче смеси из центра. В. В. Михайлов и М. Е. Топчиян [5] продолжили исследование явления непрерывной вращающейся детонации в плоскорадиальной кольцевой камере. Результаты и методы исследований режимов непрерывной вращающейся (спиновой) детонации в кольцевых камерах сгорания различной конфигурации достаточно подробно изложены в монографии [6]. Согласно экспериментам [3–5] (более подробно см. далее) начальный этап развития процесса непрерывной спиновой (вращающейся) детонации можно представить как развитие неустойчивости цилиндрического фронта горения в радиально расходящемся потоке горючей смеси.

В работах [7, 8] исследовалась устойчивость цилиндрических пламен, расходящихся из центра при покоящихся продуктах, в нелинейной постановке. В работах [9, 10] изучалась линейная модовая устойчивость стационарного цилиндрического фронта пламени в кольцевой камере сгорания по отношению к акустическим (изоэнтропическим) возмущениям. Получены квазисобственные частоты колебаний и волн для нескольких вариантов подачи горючей смеси в камеру. Показано существование неустойчивых вращающихся поперечных волн возмущения фронта пламени, определены скорости их вращения. Также было показано, что результаты [9, 10] качественно согласуются с поведением вращающихся квазидетонационных волн в плоском кольцевом канале в экспериментах [3–5], скорости которых лежат в диапазоне от скорости звука в продуктах реакции вплоть до скорости идеальной детонации Чепмена — Жуге.

Целью настоящей работы является исследование влияния возмущений энтропии потока горючей смеси на устойчивость цилиндрического фронта пламени в кольцевой камере сгорания, а также особенностей колебаний и волн, возникающих в данной конфигурации.

[©] Трилис А. В., 2021.

1. МОДЕЛИРОВАНИЕ СТАЦИОНАРНОГО ГОРЕНИЯ

Из экспериментальных наблюдений [3–5] следует, что на начальном этапе поджига горючей смеси уже после первого пробега инициирующей волны по кольцевому каналу формируется граница раздела области 1 холодной смеси (ближе к центру истечения смеси) и области 2 горячих продуктов сгорания, которую можно рассматривать как окружность постоянного радиуса (рис. 1). Граница раздела трансформируется во фронт горения. В данной конфигурации возникают неустойчивые колебания и окружные волны с малыми амплитудами, распространяющиеся (бегущие) вдоль кольцевого канала поперек течения горючей смеси. Это позволяет подойти к моделированию начального этапа развития непрерывной спиновой (вращающейся) детонации с точки зрении задачи об устойчивости цилиндрического фронта горения в радиально расходящемся потоке горючей смеси. С течением времени неустойчивость развивается во вращающиеся поперечные детонационные волны. Следует отметить, что, в силу дозвуковой скорости потока смеси, в области r < R абсолютно не исключается проникновение через щелевидный зазор возмущений потока вплоть до начального сечения кольцевого канала R_0 и, таким образом, не исключается влияние характера подачи смеси на сами возмущения (см. рис. 1).

Стационарный фронт горения моделируется согласно подходам и предположениям, ис-

Рис. 1. Схема потока в кольцевой камере сгорания

пользуемым в работе [10]. Фронт горения описывается как сильный разрыв газодинамических параметров согласно теории экзотермического скачка [11], длины волн возмущений много больше ширины зоны горения. Такой подход позволяет считать, что горение происходит в зоне «нулевой» ширины, а все существенные особенности горения можно свести к определенным условиям на линии разрыва [12].

Для дальнейшего описания выберем полярные координаты (r, φ) . На рис. 2 схематично изображен стационарный фронт горения R в радиально расходящемся дозвуковом потоке горючей смеси от начальной границы радиусом R_0 . Течение разделяется фронтом горения на две области: $\Omega_1 = \{(r, \varphi) | R_0 < r < R, 0 \leq$ $\varphi < 2\pi$ } — поток исходной (холодной) горючей смеси (область 1); $\Omega_2 = \{(r, \varphi) | r > R, 0 \le \varphi < \}$ 2π — поток высокотемпературных продуктов реакции (область 2). Газ (смесь и продукты реакции) считается невязким, нетеплопроводным и совершенным с постоянными теплоемкостями. Тогда стационарные, радиально расходящиеся изоэнтропические течения в областях Ω_1 и Ω_2 описываются следующими уравнениями [10]:

$$u_{j}\frac{du_{j}}{dr} = -\frac{1}{\rho_{j}}\frac{dp_{j}}{dr},$$

$$\frac{1}{r}\frac{d}{dr}(r\rho_{j}u_{j}) = 0,$$

$$p_{j} = A_{j}\rho_{i}^{\gamma_{j}},$$
(1)

где u — радиальная скорость, p — давление, ρ — плотность, γ — показатель политропы,

Рис. 2. Цилиндрический фронт пламени (вид сверху)

A — постоянная, зависящая от термодинамических параметров на границах R_0 и R; индексы j = 1, 2 здесь и далее обозначают параметры течения в областях Ω_1 и Ω_2 . Уравнения (1) являются соответственно законами сохранения импульса, массы и энергии.

При условии, что число Маха в области Ω_1 мало, уравнения (1) в Ω_1 имеют следующее решение [10]:

$$u_{1}(r) = \frac{u_{01}R_{0}}{r},$$

$$p_{1}(r) = p_{01} + \frac{\rho_{01}u_{01}^{2}}{2} - \frac{\rho_{01}u_{01}^{2}R_{0}^{2}}{2r^{2}},$$

$$\rho_{1} = \rho_{01}, \quad T_{1}(r) = \frac{\mu_{1}p_{1}(r)}{\rho_{01}R_{g}},$$

$$c_{1}^{2}(r) = \frac{\gamma_{1}p_{1}(r)}{\rho_{01}},$$
(2)

где μ — молярная масса, R_g — универсальная газовая постоянная, T — температура, c — скорость звука, здесь и далее нижним индексом 01 обозначены значения газодинамических параметров на границе $r = R_0$. Необходимо отметить, что стационарность решения (2) следует из условия постоянства расхода на границе $r = R_0$. Радиус стационарного фронта горения R определяется условием стационарности фронта в лабораторной системе отсчета [10]:

$$D_f(p_1, T_1)|_R = u_1|_R \equiv \frac{u_{01}R_0}{R}$$
 (3)

— и зависимостью скорости стационарного горения в режиме дефлаграции Чепмена — Жуге [10, 13]:

$$D_f^{\rm CJ}(T_1) = \alpha T_1, \tag{4}$$

где коэффициент α зависит от конкретной горючей смеси. Согласно экспериментальным наблюдениям [3–5] скорость горения в режимах стационарного радиального сжигания горючей смеси близка к скорости дефлаграции Чепмена — Жуге для данной смеси. Таким образом, фронт стационарного горения является фронтом дефлаграционного горения Чепмена — Жуге.

С использованием условия Чепмена — Жуге и соотношения (4) можно также рассчитать все параметры за фронтом горения на границе R и построить стационарное решение в области Ω_2 [10, 14]. Однако оно не потребуется в дальнейшем.

2. МАЛЫЕ ВОЗМУЩЕНИЯ СТАЦИОНАРНОГО ГОРЕНИЯ

Рассмотрим нестационарную задачу при допущениях, отмеченных в начале § 1. Наложим на все стационарные параметры малые возмущения, гармонически зависящие от времени:

$$\tilde{\mathbf{u}}_{j}(r,\varphi,t) = u_{j}(r)\mathbf{e}_{r} + \left[\delta u_{jr}(r,\varphi)\mathbf{e}_{r} + \delta u_{j\varphi}(r,\varphi)\mathbf{e}_{\varphi}\right]\exp(-i\omega t),$$
$$\tilde{\rho}_{j}(r,\varphi,t) = \rho_{j} + \delta\rho_{j}(r,\varphi)\exp(-i\omega t), \quad (5)$$

$$\delta p_j(r,\varphi) = c_j^2(r)\delta\rho_j(r,\varphi) + \delta s_j(r,\varphi)p_j(r)/c_{vj},$$
$$\tilde{R}(\varphi,t) = R + A(\varphi)\exp(-i\omega t),$$

где $i = \sqrt{-1}$, ω — круговая частота, \mathbf{e}_r , \mathbf{e}_{φ} орты локального базиса в полярной системе координат, δs_j — возмущение энтропии, c_{vj} удельная теплоемкость при постоянном объеме горючей смеси или продуктов. Третье соотношение в (5) показывает, что вклад в возмущения давления дают акустические возмущения и возмущения энтропии. Также предполагается, что возмущения скорости в области Ω_1 потенциальны. Возмущение фронта горения моделируется функцией $A(\varphi)$ в четвертом уравнении системы соотношений (5).

Запишем известные [15] условия на фронте горения (сильный разрыв) в системе отсчета фронта, представляющие собой законы сохранения массы, импульса, энергии, и кинематическое условие, связывающее нормальную скорость горения относительно газа с нормальной скоростью движения границы:

$$\tilde{\rho}_{1}(\tilde{u}_{1n} - \dot{\tilde{R}}_{n}) = \tilde{\rho}_{2}(\tilde{u}_{2n} - \dot{\tilde{R}}_{n});$$

$$\tilde{p}_{1} + \tilde{\rho}_{1}(\tilde{u}_{1n} - \dot{\tilde{R}}_{n})^{2} = \tilde{p}_{2} + \tilde{\rho}_{2}(\tilde{u}_{2n} - \dot{\tilde{R}}_{n})^{2};$$

$$\tilde{\mathbf{u}}_{1\tau} = \tilde{\mathbf{u}}_{2\tau};$$

$$h_{1}(\tilde{p}_{1}, \tilde{\rho}_{1}) + Q(\tilde{p}_{1}, \tilde{\rho}_{1}) + \frac{(\tilde{u}_{1n} - \dot{\tilde{R}}_{n})^{2}}{2} =$$

$$= h_{2}(\tilde{p}_{2}, \tilde{\rho}_{2}) + \frac{(\tilde{u}_{2n} - \dot{\tilde{R}}_{n})^{2}}{2};$$

$$\tilde{u}_{1n} - \tilde{D}_{f} = \dot{\tilde{R}}_{n}.$$
(6)

Индексы n и τ обозначают соответственно нормальные и касательные составляющие скоростей, h_j — энтальпия единицы массы горючей смеси или продуктов, Q — удельная теплота сгорания. Возмущенная скорость горения \tilde{D}_f в каждый момент времени уже не является скоростью горения Чепмена — Жуге (4) и не зависит от кривизны фронта горения, например, по модели Маркштейна [16], в которой предложено учитывать тепловую структуру пламени при помощи зависимости скорости горения от кривизны фронта. Таким образом, кинематическое условие в (6) примет вид

$$\tilde{u}_{1n} = \tilde{\tilde{R}}_n. \tag{7}$$

Далее все расчеты проводятся в безразмерных величинах:

$$\bar{\mathbf{u}}_{1} = \frac{\delta \mathbf{u}_{1}}{c_{01}}, \quad \bar{p}_{1} = \frac{\delta p_{1}}{\gamma_{1} p_{01}}, \quad \bar{p}_{1} = \frac{\delta \rho_{1}}{\rho_{01}},$$
$$\bar{c}_{1}^{2} = \frac{c_{1}^{2}}{c_{01}^{2}}, \quad \bar{T}_{1} = \frac{\delta T_{1}}{T_{01}}, \quad \bar{\omega} = \omega \frac{R - R_{0}}{c_{01}}, \quad (8)$$
$$\bar{s}_{1} = \frac{\delta s_{1}}{c_{p1}}, \quad \bar{A}(\varphi) = \frac{A(\varphi)}{R - R_{0}}, \quad \bar{r} = \frac{r}{R - R_{0}},$$
$$\bar{t} = \frac{tc_{01}}{R - R_{0}}, \quad \frac{\partial \bar{R}}{\partial \bar{t}} = \frac{1}{c_{01}} \frac{\partial \bar{R}}{\partial t}, \quad M_{1}(\bar{r}) = \frac{u_{1}(\bar{r})}{c_{01}};$$

$$\bar{\mathbf{u}}_2 = \frac{\delta \mathbf{u}_2}{c_2(R)}, \quad \bar{p}_2 = \frac{\delta p_2}{\gamma_2 p_2(R)}, \quad \bar{\rho}_2 = \frac{\delta \rho_2}{\rho_2(R)},$$

$$\bar{c}_2^2 = \frac{c_2^2}{c_2^2(R)}, \quad \bar{s}_2 = \frac{\delta s_2}{c_{p2}}, \quad \bar{T}_2 = \frac{\delta T_2}{T_2(R)}, \quad (9)$$

$$M_2(\bar{r}) = \frac{u_2(\bar{r})}{c_2(R)}, \quad K_2 = \frac{c_2(R)}{c_{01}},$$

где $c_{01}^2 \equiv \gamma_1 p_{01} / \rho_{01}$ — скорость звука на границе R_0 со стороны области Ω_1 , c_{pj} — удельная теплоемкость при постоянном давлении.

С использованием выражений (5) проводится линеаризация системы соотношений (6) в безразмерных величинах (8), (9). Условие стационарного фронта горения Чепмена — Жуге (4) равносильно условию равенства единице локального числа Маха M₂ за фронтом [1, 11]. Тогда линеаризованная система соотношений упрощается аналогично работам [10, 14]. Таким образом, условия на фронте горения имеют вид:

$$G_1(-i\bar{\omega}\bar{A}(\varphi)) - G_1\bar{u}_{1r} + G_2\bar{\rho}_1 + G_3\bar{s}_1 = 0, \quad \bar{r} = \bar{R},$$

$$\bar{u}_{1r} = -i\bar{\omega}\bar{A}(\varphi), \quad \bar{r} = \bar{R}, \quad (10)$$

$$\bar{s}_2 = F_1(-i\bar{\omega}\bar{A}(\varphi)) - F_1\bar{u}_{1r} + F_2\bar{\rho}_1 + F_3\bar{s}_1, \ \bar{r} = \bar{R},$$

где $G_i, F_i, j = 1-3, -$ безразмерные коэффициенты, зависящие от стационарных газодинамических параметров перед и за фронтом горения. Условие равенства касательных составляющих скоростей в (6) нужно для определения вихревых мод возмущений, которые могут появиться за фронтом горения. Так как на границе R_0 не предполагается вихревой составляющей возмущений, то возмущение скоростей в области Ω_1 , как было отмечено ранее, можно описать одной скалярной функцией — потенциалом, градиент которого равен возмущению скорости. Из (10), таким образом, видно, что система граничных условий расщепляется. Поэтому достаточно решить задачу в области Ω_1 с первыми двумя условиями из (10) на фронте горения, чтобы узнать поведение системы в нелом.

Уравнения для потенциальных возмущений для решения (2) в области Ω_1 можно получить из общих уравнений акустики движущейся неоднородной среды [14, 17], принимая во внимание, что основной стационарный поток незавихрен и изоэнтропичен, число Маха стационарного потока является малым параметром задачи и акустические и энтропийные волны распространяются независимо в линейном приближении. С точностью до первой степени числа Маха основного потока и при отделенном времени получаем следующие уравнения в безразмерных величинах (8):

$$\bar{\omega}^2 \bar{f} + \Delta \bar{f} + 2i\bar{\omega} M_1 \frac{\partial \bar{f}}{\partial \bar{r}} = 0, \qquad (11)$$

$$i\bar{\omega}\bar{s}_1 - M_1 \frac{\partial\bar{s}_1}{\partial\bar{r}} = 0, \qquad (12)$$

$$\bar{c}_1^2 \bar{\rho}_1 = i\bar{\omega}\bar{f} - M_1 \frac{\partial\bar{f}}{\partial\bar{r}},\tag{13}$$

$$\bar{p}_1 = \bar{c}_1^2(\bar{\rho}_1 + \bar{s}_1),$$
 (14)

где Δ — обезразмеренный при помощи соотношений (8) оператор Лапласа в полярных координатах. Безразмерный потенциал возмущения скорости: $\bar{f} = f/(c_{01}(R - R_0))$, $\bar{\mathbf{u}}_1 = \bar{\nabla}\bar{f}$. Следует отметить, что уравнение (12) означает адиабатическое распространение возмущений энтропии. То есть возмущение энтропии в «жидкой» частице не меняется при движении. Этот факт следует из-за пренебрежения явлениями вязкости и теплопроводности, а также другими диссипативными процессами в среде [15, 17]. Таким образом, в области Ω_1 в силу (10) получаем следующую задачу в терминах потенциала скоростей:

$$\bar{\omega}^2 \bar{f} + \Delta \bar{f} + 2i\bar{\omega} M_1 \frac{\partial \bar{f}}{\partial \bar{r}} = 0, \ i\bar{\omega}\bar{s}_1 - M_1 \frac{\partial \bar{s}_1}{\partial \bar{r}} = 0,$$

$$G_2\left(i\bar{\omega}\bar{f} - M_1\frac{\partial f}{\partial\bar{r}}\right) + G_3\bar{c}_1^2\bar{s}_1 = 0, \ \bar{r} = \bar{R}, \ (15)$$

$$\bar{u}_{1r} \equiv \frac{\partial f}{\partial \bar{r}} = -i\bar{\omega}\bar{A}(\varphi), \ \bar{r} = \bar{R}.$$

Третье соотношение в (15) позволяет вычислить амплитуду возмущения фронта горения $\bar{A}(\varphi)$.

Для полного определения задачи в области Ω_1 нужно еще поставить условия на границе $r = R_0$. Вид этого условия зависит от того, каким образом устроена подача горючей смеси. В работах [9, 10, 14] рассматривались три случая для акустических возмущений: постоянный расход, постоянная скорость, постоянное давление. Однако при наличии возмущений энтропии на начальной границе требуется задать еще одно условие. Согласно способу подачи горючей смеси в кольцевой камере сгорания, коллектор подачи при входе в область Ω_1 претерпевает достаточно сильное сужение [3–5]. Тогда согласно соображениям, приведенным в книге [12], на границе $r = R_0$ можно поставить условие постоянства числа Маха. Таким образом, далее будут рассматриваться три ситуации в системе подачи: 1 — постоянный расход и постоянное число Маха, 2 — постоянная радиальная скорость и постоянное число Маха, 3 — постоянное давление и постоянное число Маха. Линеаризованные граничные условия для возмущений, соответствующие этим ситуациям, приведены ниже:

$$\bar{q} \equiv \bar{u}_{1r} + M_1 \bar{\rho}_1 = 0, \ \bar{r} = \bar{R}_0,$$

$$(16)$$
 $2\bar{u}_{1r} - M_1 \bar{s}_1 - M_1 (\gamma_1 - 1) \bar{p}_1 = 0, \ \bar{r} = \bar{R}_0;$

$$\bar{u}_{1r} = 0, \ \bar{r} = \bar{R}_0,$$

$$(17)$$

$$2\bar{u}_{1r} - M_1\bar{s}_1 - M_1(\gamma_1 - 1)\bar{p}_1 = 0, \ \bar{r} = \bar{R}_0;$$

$$\bar{n}_1 = 0, \ \bar{r} = \bar{R}_0$$

$$p_1 = 0, \quad r = R_0,$$

$$(18)$$

$$2\bar{u}_{1r} - M_1\bar{s}_1 - M_1(\gamma_1 - 1)\bar{p}_1 = 0, \quad \bar{r} = \bar{R}_0,$$

где $\bar{q} = \delta q / \rho_{01} c_{01}$ — безразмерное возмущение расхода. Следует отметить, что условие постоянства расхода (16) записано при учете возмущений плотности основного потока (см. второе соотношение в (5)).

Соотношения (15) вместе с условиями (16) далее будем называть моделью 1, вместе с условиями (17) — моделью 2, вместе с условиями (18) — моделью 3.

При решении уравнений (11) и (12) в вышеописанных моделях методом разделения переменных (метод Фурье) получаются возможные моды колебаний и волн с частотой $\bar{\omega}$ и произвольными постоянными комплексными амплитудами. Общее решение уравнения (11) в виде мод выражается через функции Бесселя нецелого индекса. Его свойства подробно изучаются в работе [10]. Решение уравнения (12) в виде мод имеет вид

$$\bar{s}_{1k}(\bar{r},\varphi) = \sigma_k \exp\left(\frac{i\bar{\omega}\bar{r}^2}{2M_{01}\bar{R}_0} + ik\varphi\right), \quad (19)$$

где k — константа разделения переменных, целое число, выделяющее отдельную угловую моду колебаний [10], σ_k — произвольная постоянная комплексная амплитуда.

При подстановке решений уравнений (11)– (14) в виде мод в соответствующие граничные условия описанных выше моделей 1–3 мы получим однородные системы из четырех линейных уравнений для нахождения неизвестных комплексных амплитуд:

$$\hat{G}(\bar{\omega};k)\vec{x} = 0, \qquad (20)$$

где $\vec{x} = (b_k, d_k, a_k, \sigma_k)$ — вектор-столбец комплексных амплитуд, (b_k, d_k, a_k) — постоянные комплексные амплитуды общего решения уравнения (11) и возмущения фронта горения соответственно [10]. Известно, что система (20) имеет нетривиальное (ненулевое) решение тогда и только тогда, когда определитель матрицы системы равен нулю:

$$\det(\hat{G}(\bar{\omega};k)) = 0. \tag{21}$$

Таблица 1	L
-----------	---

k	l					
	1	2	3	4	5	
0	1.04 + 0.424i	1.94 + 0.494i	2.88 + 0.434i	3.89 + 0.454i	4.80 + 0.510i	
1	1.07 + 0.359i	2.00 + 0.477i	2.90 + 0.443i	3.91 + 0.447i	4.83 + 0.510i	
2	0.11 + 0.052i	1.13 + 0.207i	2.15 + 0.360i	3.01 + 0.458i	3.95 + 0.433i	
3	0.19 - 0.052i	1.16 + 0.034i	2.24 + 0.158i	3.22 + 0.368i	4.05 + 0.430i	
4	0.22 - 0.163i	1.18 - 0.138i	2.29 - 0.044i	3.36 + 0.141i	4.26 + 0.375i	
5	0.24 - 0.279i	1.20 - 0.307i	2.31 - 0.235i	3.43 - 0.090i	4.47 + 0.156i	

Квазисобственные частоты $\bar{\omega}_{kl}$ в модели 1

Таблица 2

	· ~			_			\sim
к	Pagucohor	FDAUULIA	USCTOTL	1.11 1	Þ	молепи	
	Bashcooc	вспивіс	частоты	$\omega_{\kappa l}$	ъ	модели	~

k	l					
10	1	2	3	4	5	
0	1.14 + 0.123i	1.92 + 0.333i	2.85 + 0.111i	3.99 + 0.156i	4.79 + 0.376i	
1	0.10 - 0.045i	1.16 + 0.026i	2.06 + 0.320i	2.85 + 0.141i	3.99 + 0.139i	
2	0.15 - 0.148i	1.19 - 0.153i	2.30 + 0.077i	2.99 + 0.274i	4.00 + 0.111i	
3	0.16 - 0.261i	1.20 - 0.333i	2.35 - 0.200i	3.37 + 0.151i	4.04 + 0.160i	
4	0.14 - 0.379i	1.21 - 0.507i	2.36 - 0.416i	3.50 - 0.202i	4.36 + 0.181i	
5	0.11 - 0.499i	1.22 - 0.678i	2.37 - 0.612i	3.53 - 0.460i	4.64 - 0.148i	

Таблица З

Квазисобственные частоты $ar{\omega}_{kl}$ в модели 3

k	l					
10	1	2	3	4	5	
0	1.07 + 0.346i	1.93 + 0.450i	2.87 + 0.349i	3.92 + 0.379i	4.80 + 0.475i	
1	1.10 + 0.269i	2.02 + 0.434i	2.89 + 0.365i	3.94 + 0.369i	4.83 + 0.476i	
2	0.15 - 0.006i	1.15 + 0.103i	2.20 + 0.286i	3.01 + 0.408i	3.97 + 0.351i	
3	0.20 - 0.114i	1.18 - 0.074i	2.28 + 0.565i	3.26 + 0.308i	4.06 + 0.360i	
4	0.22 - 0.228i	1.20 - 0.248i	2.32 - 0.153i	3.41 + 0.045i	4.30 + 0.318i	
5	0.22 - 0.345i	1.21 - 0.417i	2.34 - 0.346i	3.46 - 0.198i	4.53 + 0.072i	

Уравнение (21) определяет квазисобственные частоты $\bar{\omega}_k$ (реальные значения определяют частоты колебаний, а мнимые значения квазисобственных частот определяют развитие колебаний по времени) колебаний и волн в соответствующих моделях 1–3. Для каждого k существует набор квазисобственных частот $\bar{\omega}_{kl}$, соответствующих радиальным модам колебаний, где l — номер радиальной моды. При k = 0 уравнение дает частоты чисто радиальных колебаний.

3. РАСЧЕТ ВОЗМУЩЕНИЙ ГОРЕНИЯ ПРИ НАЛИЧИИ ВОЛН ЭНТРОПИИ

Выполним конкретные расчеты для камеры, в которой проводились эксперименты [3–5] со стехиометрической ацетиленокислородной

Рис. 3. Распределение возмущений давления для мод {3-1} и {3-2} в модели 3

горючей смесью. Начальные (граничные) газодинамические параметры для стационарных течений (2), (3) рассчитывались при помощи подходов и методов, изложенных в работе [10]. Для стехиометрической ацетиленокислородной смеси показатель политропы $\gamma_1 = 1.3323$, молярная масса $\mu_1 = 0.0303$ кг/моль. Начальные газодинамические параметры: $p_{01} = 23\,964\,\, \Pi \mathrm{a},$ $\rho_{01} = 0.2965 \text{ kg/m}^3$, $c_{01} = 328.1474 \text{ m/c}$, $T_{01} =$ 294.5620 К, $u_{01} = 109.3825$ м/с, $M_{01} = 1/3$. Радиус начальной границы $R_0 = 40.35$ мм, радиус фронта горения $R_{exp} = 103$ мм. Газодинамические параметры за стационарным фронтом горения рассчитывались с использованием условия Чепмена — Жуге и условия химического равновесия продуктов [13, 18]. Согласно этому $\alpha = 0.1369$ м/(с · K) (см. формулу (4)), показатель политропы продуктов $\gamma_2 = 1.2229$, скорость звука за фронтом горе-

ния $c_2(R) = 1\,126$ м/с. Коэффициенты в системе соотношений (10) имеют следующие значения: $G_1 = 16.3119, G_2 = 0.7078, G_3 = 2.8380,$ $F_1 = -1.5794, F_2 = -0.2987, F_3 = -0.4669.$

3.1. Устойчивость цилиндрического фронта пламени

Найденные при помощи уравнения (21) квазисобственные частоты в соответствующих моделях приведены в табл. 1–3.

Из таблиц 1–3 видно, что во всех моделях существуют квазисобственные частоты с положительной мнимой частью. Так как при записи зависимости от времени мы использовали множитель $e^{-i\bar{\omega}\bar{t}}$, то это значит, что во всех описанных моделях существуют моды колебаний и волн, неустойчивые по малым периодическим возмущениям.

Рис. 4. Распределение возмущений давления для мод {4-1} и {4-2} в модели 3

Следует обратить внимание на квазисобственные частоты, приведенные в табл. 1, для модели 1 с постоянным расходом в системе подачи горючей смеси. В работах [9, 10] было показано, что для акустических возмущений при постоянном расходе в системе подачи все квазисобственные частоты колебаний и волн имеют отрицательную мнимую часть и фронт горения устойчив. При наличии возмущений энтропии даже при условии постоянного расхода в системе подачи существуют моды колебаний и волн, для которых фронт горения неустойчив.

Из энергетического подхода (см., например, [12]) следует, что при отсутствии диссипации внутри области колебаний неустойчивость появляется, когда средний за период колебаний суммарный поток энергии в область колебаний через границы положительный. Таким образом, устойчивость в моделях 1–3 всецело определяется условиями для возмущений на границах R_0 и R области Ω_1 (см. рис. 2). Для неустойчивых мод суммарный поток энергии в среднем за период колебаний должен быть положительным.

3.2. Механика колебаний и волн

Аналогично работам [9, 10] в моделях данной работы существуют поперечные окружные волны возмущения фронта горения, распространяющиеся (вращающиеся) по кругу безразмерного радиуса \bar{R} с угловой скоростью $\operatorname{Re}(\bar{\omega}_{kl})/k$. Это следует из выражения для возмущения фронта горения (5) при разложении в гармонический ряд Фурье функции $A(\varphi)$. Для моды $\{k-l\}$ возмущенный фронт горения будет иметь k локальных пучностей («горбов»), вращающихся по окружности безразмерного радиуса \bar{R} с соответствующей угловой скоростью $\operatorname{Re}(\bar{\omega}_{kl})/k.$

Для наглядности на рис. 3 и 4 представлены распределения безразмерных возмущений давления по углу и безразмерному радиусу для нескольких мод в модели 3 с равенством нулю возмущения давления и числа Маха на начальном радиусе. Для других граничных условий на начальном радиусе механика колебаний будет аналогичной. Отличаться могут значения функций на начальном радиусе и начальные фазы колебаний.

ЗАКЛЮЧЕНИЕ

В работе проведено моделирование начального (линейного) этапа развития вращающихся поперечных детонационных волн в плоскорадиальной кольцевой камере сгорания и выявлены его особенности при наличии волн возмущения энтропии потока горючей смеси. В рамках феноменологической теории горения смесей при помощи теории возмущений решена возникающая на данном этапе задача модовой устойчивости цилиндрического фронта дефлаграционного горения Чепмена — Жуге при малых числах Маха стационарного потока горючей смеси. Получены квазисобственные частоты и моды колебаний и волн, возникающих в данной конфигурации.

В системе подачи горючей смеси на начальной границе $r = R_0$ ставилось несколько типов граничных условий для возмущений (см. соотношения (16)–(18)). Обнаружено, что существуют квазисобственные частоты, которые описывают возрастающие или убывающие по времени колебания и волны. Показано, что если в системе имеются возмущения энтропии, то фронт горения неустойчив даже при условии постоянного массового расхода (и при постоянстве числа Маха) в системе подачи горючей смеси, в отличие от акустических возмущений [10, 14].

Исследована механика возмущений: получены пространственные формы квазисобственных функций колебаний в потоке горючей смеси и формы колебаний и волн возмущенного фронта горения. Показано наличие вращающихся структур в кольцевом канале камеры сгорания.

ЛИТЕРАТУРА

- Щелкин К. И., Трошин Я. К. Газодинамика горения. — М.: Изд-во АН СССР, 1963.
- 2. Войцеховский Б. В. О спиновой детонации // Докл. АН СССР. — 1957. — Т. 114, № 4. — С. 717–720.
- 3. Войцеховский Б. В. Стационарная детонация // Докл. АН СССР. — 1959. — Т. 129, № 6. — С. 1254–1256.
- Войцеховский Б. В. Спиновая стационарная детонация // ПМТФ. — 1960. — № 3. — С. 157– 164.
- 5. Михайлов В. В., Топчиян М. Е. К исследованиям непрерывной детонации в кольцевом канале // Физика горения и взрыва. — 1965. — Т. 1, № 4. — С. 20–23.
- Быковский Ф. А., Ждан С. А. Непрерывная спиновая детонация. — Новосибирск: Изд-во СО РАН, 2013.
- Filyand L., Sivashinsky G. I., Frankel M. L. On self-acceleration of outward propagating wrinkled flames // Physica D: Nonlinear Phenomena. — 1994. — V. 72, N 1-2. — P. 110–118.
- Минаев С. С., Пирогов Е. А., Шарыпов О. В. Нелинейная модель гидродинамической неустойчивости расходящегося пламени // Физика горения и взрыва. — 1996. — Т. 32, № 5. — С. 8–16.
- Trilis A. V., Vasiliev A. A., Sukhinin S. V. Traveling circumferential unstable wave of cylindrical flame front // J. Phys.: Conf. Ser. — 2016. — V. 722. — DOI: 10.1088/1742-6596/722/1/012039.
- 10. **Трилис А. В., Сухинин С. В., Васильев А. А.** Устойчивость цилиндрического фронта пламени в кольцевой камере сгорания // Сиб. журн. индустр. матем. 2017. Т. 20, № 4. С. 67–79.
- 11. Митрофанов В. В. Детонация гомогенных и гетерогенных систем. Новосибирск: Изд-во ИГиЛ СО РАН, 2003.
- Раушенбах Б. В. Вибрационное горение. М.: Физматлит, 1961.
- 13. Васильев А. А., Трилис А. В. Скорость дефлаграционного горения при повышенных давлениях и температурах // Теплофизика и аэромеханика. — 2013. — Т. 20, № 5. — С. 615–622.
- 14. Трилис А. В. Акустические колебания и устойчивость цилиндрического фронта горения в плоскорадиальной кольцевой камере сгорания: дис... канд. физ.-мат. наук / ИГиЛ СО РАН. — Новосибирск, 2017.
- Черный Г. Г. Газовая динамика. М.: Наука, 1988.
- Markstein G. H. Experimental and theoretical studies of flame-front stability // J. Aeronaut. Sci. — 1951. — V. 18, N 3.

- 17. Блохинцев Д. И. Акустика движущейся неоднородной среды. — М.: Наука, Физматлит, 1981.
- 18. Васильев А. А. Оценка зависимости скорости пламени от давления и температуры // Физика горения и взрыва. 2011. Т. 47, № 5. С. 13–17.

Поступила в редакцию 22.05.2020. После доработки 19.06.2020. Принята к публикации 22.07.2020.