2020

УДК 539.42

РАЗРУШЕНИЕ ТОЛСТОСТЕННЫХ ЦИЛИНДРИЧЕСКИХ ТЕЛ МЕТОДОМ ГИДРОРАЗРЫВА

М. А. Леган, В. А. Блинов, А. Г. Демешкин, А. Ю. Ларичкин, А. Н. Новоселов

Институт гидродинамики им. М. А. Лаврентьева СО РАН, E-mail: larichking@gmail.com, просп. Академика Лаврентьева, 15, 630090, г. Новосибирск, Россия

Проведено экспериментальное исследование гидроразрыва толстостенных цилиндров с центральным круговым отверстием из материала GF-177 на основе цемента. Определены предельные напряжения при четырех видах напряженного состояния: одноосном сжатии и растяжении, испытании методом бразильской пробы, гидроразрыве. Результаты бразильского теста, сжатия прямоугольных параллелепипедов и круглых цилиндров использовались для оценки предельного давления при гидроразрыве образцов. Установлен критический коэффициент интенсивности напряжений. Проведено сравнение результатов расчетов предельного давления с аналитическими значениями на основе решения Ламе и экспериментальными данными. Описано влияние интервала выдержки на прочность.

Гидроразрыв, хрупкое разрушение, нелокальный критерий прочности

DOI: 10.15372/FTPRPI20200502

Деформирование и разрушение скважин в горных породах можно моделировать в лабораторных условиях на толстостенных трубах из песчаника или цемента. Реальные скважины имеют больший диаметр по сравнению с лабораторными моделями, что может стать причиной несоответствия модельных данных полевым. Масштабный фактор проявляется при добыче нефти методом гидроразрыва пласта. В [1] проведены лабораторные испытания на гидроразрыв двух горных пород (известняка и гранита). Диаметр цилиндрического отверстия, имитировавшего скважину, изменялся в пределах 3–32 мм, и критическое давление для известнякового образца уменьшилось в 7 раз, для гранитного — в 1.5 раза. Результаты аналогичных экспериментов на тех же породах представлены в [2, 3], где диаметр отверстия в известняке менялся до 50 мм, в граните — до 100 мм. С увеличением диаметра критическое давление снижалось, асимптотически приближаясь к постоянному значению.

Концентрации напряжений сильнее повышают влияние масштабного фактора, чем однородное напряженное состояние [4, 5]. Буровая скважина в горном массиве — концентратор напряжений. Неоднородность напряженного состояния вблизи скважины оказывает влияние

Nº 5

Работа выполнена при частичной финансовой поддержке РФФИ (проект № 18-08-00528), а также гранта Правительства РФ (№ 14.W03.31.0002).

на прочность геоматериалов. Для оценки предельного давления при гидроразрыве горных пород можно использовать нелокальные критерии разрушения, учитывающие неоднородность напряженного состояния. Критерий средних напряжений, градиентный критерий разрушения и др. наиболее перспективны для применения из-за наличия параметра, который имеет размерность длины, характеризует неоднородность структуры материала и выражается через стандартные характеристики материала: предел прочности при одноосном растяжении и критический коэффициент интенсивности напряжений [6–8]. Прочность, трещиностойкость и неоднородность структуры некоторых хрупких материалов и горных пород описаны в [9–11].

Цель настоящей работы — сравнение результатов экспериментальных исследований и данных моделирования для образцов из модельного материала GF-177 на основе цемента, а также проведение испытаний на растяжение, сжатие, гидроразрыв толстостенных труб, а также с помощью бразильского теста.

МЕТОДЫ И МАТЕРИАЛЫ

Испытания на гидроразрыв цилиндрических образцов. На установке, создающей высокое давление масла, экспериментально исследован гидроразрыв толстостенных цилиндров с центральным круговым отверстием. Максимальное давление масла в установке равно 40 МПа. На рис. 1 приведены типы образцов для испытаний на гидроразрыв.

Рис. 1. Типы образцов для испытаний на гидроразрыв: *а* — тип А (внутренний диаметр 10.5–11.0 мм, внешний 105–110 мм); *б* — тип Б (внутренний диаметр 25 мм, внешний 250 мм). Стрелки — ход нагнетания масла в образец

Образцы и способ нагружения. Цилиндры изготовлены из материала GF-177 на основе цемента с полимерными добавками, которые обеспечивают отсутствие усадки и растрескивания материала при затвердевании. Раствор получен путем смешивания смеси с водой в рекомендуемом производителем соотношении: 0.29 л воды на 1 кг смеси. Раствор заливался в цилиндрические формы, расположенные на вибростенде, с помощью которого из раствора удалялись пузырьки воздуха. Цилиндрические образцы имели внешний диаметр 105 мм (тип A) и 250 мм (тип Б) и высоту 100 мм (рис. 1). Вдоль оси образца просверливалось центральное отверстие диаметром 10.5 - 11.0 мм (тип A) или 25 мм (тип Б). В качестве образца применялся толстостенный цилиндр с отношением внутреннего и внешнего радиусов ~1:10, который позволяет моделировать круговое отверстие в бесконечной среде. Система нагружения образца состояла из металлической трубки для нагнетания масла диаметром 10 мм (для типа A) или 23.5 мм (для типа Б) с радиальными отверстиями диаметром 4 мм (рис. 1). На торцах образцов вокруг отверстия устанавливались резиновые уплотнители, трубка для нагнетания масла вставлялась в отверстие цементного образца. Далее в трубку подавалось компрессорное масло Total Dacnis 32, которое через радиальные отверстия поступало во внутренний объем образца. Производительность насоса 15 см³/мин. Давление определялось с помощью манометра испытательной установки и электрического датчика давления на выходе из установки. Данные от датчика передавались на осциллограф в реальном масштабе времени, а затем в компьютер для дальнейшей обработки. Расход масла наблюдался по датчику расхода.

После установки системы нагружения в образец и подключения к магистрали подачи масла давление масла повышалось до момента разрушения образца. Ход всего испытания записывался на видеокамеру. Факт разрушения определялся по резкому падению давления на манометре.

При давлении p внутри кругового отверстия в бесконечной среде, согласно решению задачи Ламе, на контуре отверстия действуют два напряжения (окружное растягивающее $\sigma_{\varphi} = p$ и радиальное сжимающее $\sigma_r = -p$). На контуре отверстия и в других точках бесконечной среды существует напряженное состояние чистого сдвига. При отсутствии осевых напряжений и нагружении бесконечной среды с круговым отверстием внутренним давлением реализуется условие плоской деформации. Разрушенный образец типа А, схема нагружения и теоретическое распределение напряжений, а также полученные в эксперименте зависимости давления от времени на входе в образцы типа Б показаны на рис. 2.

Рис. 2. Гидроразрыв цилиндрических образцов: a — разрушенный образец D = 105 мм, d = 10.5 мм вместе с системой нагружения; δ — схема нагружения образца и эпюра растягивающего напряжения; ϵ — зависимость давления p внутри цилиндра от времени t для образцов типа Б (l-7 — номера образцов)

Испытания проводились для нескольких партий, отличающихся временем и объемом заливки. В партию I входили образцы из цементного раствора на основе GF-177. Из этого объема изготовлено три образца типа A, три кубических образца с длиной ребра 100 мм для испытаний на сжатие и три образца в виде дисков диаметром 61 мм толщиной 31 мм для бразильского теста. После заливки перед экспериментом образцы выдерживались 30 дней. Результаты испытаний образцов партии I приведены в табл. 1.

Вид нагружения	Номер образца	Предельное напряжение σ	Среднее значение σ	Стандартное отклонение
	1 (тип А)	3.30		
Гидроразрыв	2 (тип А)	4.20	3.70	0.670
	3 (тип А)	3.60		
Сжатие (кубы)	1	10.34		0.250
	2	9.89	10.20	
	3	10.31		
	1	1.91		
Бразильский тест	2	1.72	1.82	0.095
	3	1.82		

ТАБЛИЦА 1	. Предельные нап	ряжения для об	разцов паг	этии I при	а разных типа	ах нагрузки.	МΠа

Определение параметров материала из испытаний на растяжение и сжатие. Выполнена вторая заливка цементного раствора в формы для образцов различных типов. Изготовлены образцы на растяжение, сжатие, нагружение внутренним давлением составной трубы цемент – сталь с внешним диаметром 56 мм и цементной трубы с толщиной стенки 23, 20 и 18 мм.

Определение модуля упругости цемента проводилось при растяжении и сжатии на образцах (рис. 3). Коэффициент Пуассона устанавливался только при испытаниях на сжатие. Образцы на растяжение имели длину рабочей части 40 мм. После заливки в формы часть образцов выдерживалась 14 и 19 дней (партия II), а часть — 60 дней. Поперечные сечения образцов на растяжение, выдержанных 14 и 19 дней, имели размеры a = 11.0 мм, b = 14.9 мм, а 60 дней a = 25 мм, b = 50 мм. Образцы на растяжение закреплялись в захватах испытательной установки при помощи шарниров (рис. 3*a*). Уменьшение концентрации напряжений в местах закрепления и переходов от рабочей части образца к широким частям достигалось путем наклеивания накладок из стеклоткани.

Рис. 3. Образцы на растяжение (a) и сжатие (δ)

Деформация образцов $\varepsilon = \Delta R / (KR_0)$ определялась с помощью двух тензодатчиков, наклеиваемых на поверхность образца вдоль и поперек линии действия силы (*K* — коэффициент тензочувствительности; R_0 — номинальное сопротивление тензодатчика). Испытания проводились при нормальной температуре на установке Zwick Roell Z100 в ИГиЛ СО РАН. Скорость движения траверсы равна 2 мм/мин. Результаты экспериментов на растяжение приведены в табл. 2 (*E* — модуль Юнга; $\sigma_{\rm B}$, ε^* — предел прочности материала и относительная деформация при разрушении; Δt — время выдержки).

<i>Е</i> , МПа	$\sigma_{_{\scriptscriptstyle \mathrm{B}}},$ МПа	$\varepsilon^* \cdot 10^3$	Δt , дни
3844	2.26	0.46	14
4266	1.76	0.33	19
4812	1.84	0.42	19
4364	2.07	0.46	19
6670	0.86	0.12	19
5340	0.96	0.18	19
7720	1.29	0.17	19
5230	1.55	0.30	19
4008	1.60	0.38	60
6931	1.29	0.14	60
11110	3.00	0.29	60
9883	1.83	0.53	60
	<i>E</i> , МПа 3844 4266 4812 4364 6670 5340 7720 5230 4008 6931 11110 9883	$E, M\Pi a$ $\sigma_{_{\rm B}}, M\Pi a$ 38442.2642661.7648121.8443642.0766700.8653400.9677201.2952301.5540081.6069311.29111103.0098831.83	$E, M\Pi a$ $\sigma_{_{\rm B}}, M\Pi a$ $\varepsilon^* \cdot 10^3$ 38442.260.4642661.760.3348121.840.4243642.070.4666700.860.1253400.960.1877201.290.1752301.550.3040081.600.3869311.290.14111103.000.2998831.830.53

ТАБЛИЦА 2. Результаты испытаний на растяжение образцов (партия II)

Средний модуль упругости для партии II при растяжении составляет E = 5281 МПа, средняя деформация до разрушения — $\varepsilon^* = 0.03\%$, средний предел прочности — $\sigma_{_{\rm B}} = 1.57$ МПа. Средние значения для партии с измененной формулой после выдержки 60 дней: E = 9333 МПа, $\varepsilon^* = 0.05\%$, $\sigma_{_{\rm B}} = 1.93$ МПа (рис. 4*a*).

Рис. 4. Данные испытаний образцов из цемента при растяжении (*a*) и сжатии (*б*): 1-6, 9-12 — номера образцов

Цилиндрические образцы для испытания на сжатие имели высоту h=33 мм и диаметр d=30 мм после заливки. До начала эксперимента образцы находились при нормальной температуре в течение 21 дня. Результаты испытаний на сжатие показаны в табл. 3 (σ_c — напряжение в момент разрушения при сжатии; $\mathcal{E} \perp$, \mathcal{E} — поперечная и продольная деформации при разрушении в опытах на сжатие; ν — коэффициент Пуассона). Данные испытаний приведены на рис. 46. Средние значения параметров материала при сжатии: E=22350 МПа, $\sigma_c = 5.68$ МПа, $\mathcal{E} = 0.026\%$, $\nu = 0.1$.

Образец	<i>Е</i> , МПа	$\sigma_{ m c}$, MПa	$\varepsilon \perp \cdot 10^3$	$\varepsilon \cdot 10^3$	V
1	27 768	5.00		0.24	
2	22 890	5.49		0.24	
3	20 167	6.94	-0.03	0.36	0.10
4	18816	2.78	-0.01	0.12	0.07
5	20 174	8.33	-0.03	0.41	0.08
6	24 287	5.55	-0.03	0.18	0.16
Среднее	22 350	5.68	-0.025	0.26	0.10
Стандартное отклонение	3328	1.87	0.01	0.11	0.04

ТАБЛИЦА 3. Результаты испытаний на сжатие образцов из цементной смеси GF-177 (партия II)

Задача о составном толстостенном цилиндре под действием внутреннего давления. Для оценки влияния проникновения жидкости в материал при гидроразрыве цементного толстостенного цилиндра под действием давления проведены испытания на образцах в виде составных труб, на которые действовало внутреннее давление. Образцы состояли из стальной трубы *l* с внешним и внутренним радиусами b=13 мм, a=12 мм (рис. 5*a*), на которую залита труба из цементного материала *2* с внешним радиусом D=28 мм (образцы выдерживались 7 дней после заливки). Два тензодатчика для определения окружной деформации располагались на внешних сторонах стальной и цементной труб. В стальную трубу нагнеталось масло до разрушения цементной. При испытаниях устанавливалось давление, которому соответствует момент разрушения цементной трубы, происходящий при достижении критического давления с образованием тонкой трещины вдоль образующей цилиндра.

Рис. 5. Образец для испытаний под давлением (*a*): *1* — стальная труба; *2* — цементная труба; составной образец — вид сбоку (*б*)

Результаты испытаний приведены в табл. 4 (P_{cr} — давление внутри стальной трубы в момент разрушения внешней трубы из цементной смеси; ε_c , ε_{st} — окружная деформация на внешней поверхности цементной и стальной труб соответственно, полученные в эксперименте в момент разрушения цемента; $\varepsilon_{c(th)}$, $\varepsilon_{st(th)}$ найдены из решения задачи о составной трубе: $\varepsilon_{c(th)} = u(D) / D$, $\varepsilon_{st(th)} = u(b) / b$).

Классическая задача о составной трубе под давлением имеет аналитическое решение [12], на его основе можно определить давление внутренней стальной трубы на внешнюю цементную трубу $-P_c$. Радиальные перемещения u(r) на внутренней поверхности цементной трубы и внешней поверхности стальной трубы должны быть одинаковыми, откуда находится P_c .

Образец	P_{cr} , МПа	$\mathcal{E}_c \cdot 10^3$	$\mathcal{E}_{c(th)} \cdot 10^3$	$\varepsilon_{st} \cdot 10^3$	$\mathcal{E}_{st(th)} \cdot 10^3$	$P_{\!c}$, МПа	$\sigma_{\scriptscriptstyle{arphi}}$, МПа	$\sigma_{_r}$, MIIa
1	26.97	0.75	0.43	1.55	1.30	4.15	6.44	-4.15
2	26.97	1.00	0.43	2.10	1.30	4.15	6.44	-4.15
3	24.52	0.77	0.39	1.30	1.18	3.78	5.85	-3.78
Среднее	26.15	0.84	0.42	1.65	1.26	4.03	6.24	-4.03

ТАБЛИЦА 4. Результаты испытаний давлением составной трубы из стали и цементной смеси GF-177 под давлением

Перемещение для стальной оболочки:

$$u(r)|_{r=b} = \frac{1 - v_{st}}{E_{st}} \frac{a^2 P_{cr} - b^2 P_c}{b^2 - a^2} b + \frac{1 + v_{st}}{E_{st}} \frac{a^2 b^2 (P_{cr} - P_c)}{b^2 - a^2} \frac{1}{b}, \quad a \le r \le b,$$

и цементной:

 $u(r)|_{r=b} = \frac{1-v_c}{E_c} \frac{b^2 P_c}{D^2 - b^2} b + \frac{1+v_c}{E_c} \frac{b^2 D^2 P_c}{D^2 - b^2} \frac{1}{b}, \quad b \le r \le D.$

Введем обозначения для соотношений параметров материала и геометрии образцов:

$$A_{1} = \frac{1 - v_{st}}{E_{st}} \frac{b}{b^{2} - a^{2}}, \quad B_{1} = \frac{1 + v_{st}}{E_{st}} \frac{b}{b^{2} - a^{2}}, \quad A_{2} = \frac{1 - v_{c}}{E_{c}} \frac{b}{D^{2} - b^{2}}, \quad B_{2} = \frac{1 + v_{c}}{E_{c}} \frac{b}{D^{2} - b^{2}}$$

Тогда

$$P_c = \frac{(A_1 + B_1)a^2 P_{cr}}{A_1 b^2 + A_2 b^2 + B_2 D^2 + B_1 a^2}$$

Напряженное состояние внутри стальной трубы:

$$\sigma_r = \frac{a^2 P_{cr} - b^2 P_c}{b^2 - a^2} - \frac{1}{r^2} \frac{a^2 b^2 (P_{cr} - P_c)}{b^2 - a^2}, \quad \sigma_{\varphi} = \frac{a^2 P_{cr} - b^2 P_c}{b^2 - a^2} + \frac{1}{r^2} \frac{a^2 b^2 (P_{cr} - P_c)}{b^2 - a^2}, \quad a \le r \le b.$$

Напряженное состояние внутри цементного цилиндра:

$$\sigma_r = \frac{b^2 P_c}{D^2 - b^2} - \frac{1}{r^2} \frac{b^2 D^2 P_c}{D^2 - b^2}, \quad \sigma_{\varphi} = \frac{b^2 P_c}{D^2 - b^2} + \frac{1}{r^2} \frac{b^2 D^2 P_c}{D^2 - b^2}, \quad b \le r \le D.$$

Среднее разрушающее давление внутри стальной трубы по проведенным испытаниям $P_{cr} = 26.15$ МПа, модуль упругости стали $E_{st} = 200$ ГПа, коэффициент Пуассона $v_{st} = 0.29$. Среднее значение модуля упругости при растяжении для смеси GF-177 $E_c = 5280$ МПа, коэффициента Пуассона $v_c = 0.10$. Для заданных a = 12 мм, b = 13 мм и D = 28 мм при данном P_{cr} среднее давление P_c в цементной трубе по трем испытаниям равно 4.03 МПа, что близко к значению давления, при котором разрушались образцы типа А партии I (табл. 1).

На рис. 6 приведены зависимости перемещений, деформаций и напряжений от радиуса. Видно, что присутствует разрыв компонент окружных напряжений и радиальных компонент деформаций на границе между стальным и цементным цилиндрами.

Рис. 6. Зависимости перемещения (*a*), деформаций (б) и напряжений (*в*) внутри составной трубы от радиуса в цилиндре: *l* — компоненты окружных компонент тензоров напряжений и деформаций; *2* — радиальных компонент

Разрушение цементной оболочки давлением. Для оценки влияния размеров внутреннего диаметра на предельное давление при разрушении цементной трубы проведены испытания по гидроразрыву толстостенных труб. Внешний радиус трубы D=28 мм оставался постоянным, внутренние радиусы менялись с 5 до 10 мм (рис. 7*a*).

Результаты испытаний приведены в табл. 5. Предельное давление для цементной оболочки со стальным посредником и без него при $d_i = 10$ мм отличается в ~2 раза, так как при нагружении цементных труб без посредника происходит внедрение масла в поры цементного материала (в среднем на 6 мм), что приводит к понижению разрушающего давления. На рис. 76 представлены зоны проникновения масла. Кроме партий I и II, организована заливка партии III, которая состояла из пяти образцов типа A и семи образцов типа Б.

Рис. 7. Труба под внутренним давлением: а — схема нагружения; б — зона проникновения масла

Образец	d_i , мм	P_c , МПа	$σ_{_{arphi}}$, ΜΠα	$\sigma_{_r}$, МПа
1	5	2.94	3.16	-2.92
2	5	3.33	3.56	-3.30
3	8	1.96	2.34	-1.93
4	8	1.91	2.28	-1.88
5	10	1.99	2.61	-1.96
6	10	2.01	2.63	-1.98

ТАБЛИЦА 5. Разрушающее давление толстостенной трубы из смеси GF-177

Для вычисления критического коэффициента интенсивности напряжений материала GF-177 изготовлено два образца диаметром 120 мм и толщиной 40 мм с центральным разрезом шириной 40 мм и толщиной 0.3 мм. Образцы заливались в форму, выдерживались 30 дней (для разреза в центр формы помещалась полоска из лавсана) и испытывались на установке Zwick/Roell Z100 путем сжатия между плитами вдоль линии разреза. По двум экспериментам по методике [13] получен средний критический коэффициент интенсивности напряжений: $K_{Ic} = 0.142 \text{ MII} \cdot \text{M}^{1/2}$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

По результатам испытаний для двух видов напряженного состояния (бразильский тест и сжатие) на основе критерия прочности Кулона – Мора построена диаграмма предельных состояний (рис. 8), которая дает оценку предела прочности $\sigma_{\rm B} = 3.92$ МПа при одноосном растяжении для материала партии I. Крестиком отмечен результат моделирования методом граничных элементов гидроразрыва толстостенной трубы с отношением диаметров D/d=10. Экспериментальное значение предельного растягивающего напряжения при гидроразрыве превышает оценку, которую можно получить с помощью критерия Кулона – Мора, что объясняется влиянием неоднородности напряженного состояния при гидроразрыве. Испытания после различной выдержки образцов дают разные предельные напряжения.

Рис. 8. Предельные состояния и экспериментальные данные образцов: 1 — бразильский тест; 2 — сжатие кубических образцов (партия I); 3 — растяжение (партия I). Труба под давлением: 4 — тип А (D/d=105/10.5 мм, партия I); 5 — тип А (D/d=110/10 мм, выдержка 15 дней, партия III); 6 — тип А (D/d=110/10 мм, выдержка 60 дней, партия III); 7 — тип Б (D/d=250/25 мм, выдержка 60 дней, партия III); 7 — тип Б (D/d=250/25 мм, выдержка 60 дней, партия III); 8 — критерий Кулона – Мора (партия I); 9 — результат расчета трубы под давлением (D/d=10 при помощи метода граничных элементов); 10 — решение задачи Ламе о трубе под давлением для параметров партии I

На рис. 9 приведена диаграмма на основе данных испытаний по растяжению, сжатию и гидроразрыву цементных труб и образцов из партии II. Наблюдается соответствие между решением задачи Ламе и экспериментальными данными, а также увеличение предельных значений давления при гидроразрыве труб в зависимости от выдержки образцов после их отливки.

Рис. 9. Предельные состояния и экспериментальные данные образцов с выдержкой после заливки менее 20 дней: 1 — растяжение (партия II); 2 — сжатие круглых образцов (партия II); 3 — составная труба под действием внутреннего давления. Цементная труба под действием давления: 4 — D=28 мм, $d_1=5$ мм; 5 — D=28 мм, $d_2=8$ мм; 6 — D=28 мм, $d_3=10$ мм (выдержка 7 дней); 7 — критерий Кулона – Мора для образцов партии II; 8 — результат расчета трубы под давлением D/d=10 при помощи метода граничных элементов для партии II; 9 — решение задачи Ламе о трубе под давлением для партии II

Для материала GF-177 найдены основные механические характеристики, необходимые для перехода к масштабному моделированию гидроразрыва. Причина большего разброса экспериментальных данных — неравномерность распределения песка в смеси при заливке и различное время выдержки при затвердевании образцов.

Моделирование гидроразрыва с помощью градиентного критерия разрушения. Для моделирования разрушения при гидроразрыве можно использовать градиентный критерий [7, 8]: при неравномерном распределении напряжений для определения начала разрушения с предельным растягивающим напряжением материала необходимо сравнивать не максимальное значение первого главного напряжения σ_1 (принятого в качестве эквивалентного), а максимальное эффективное напряжение σ_e , меньшее эквивалентного.

Эффективное напряжение пропорционально σ_1 и зависит от локальной неравномерности поля напряжений в окрестности точки и представительного размера неоднородности материала. Локальная неравномерность распределения напряжений характеризуется относительным градиентом $g_v = |\text{grad}\sigma_v|/\sigma_v$ положительного нормального напряжения σ_v , действующего на плоскости, включающей площадку первого главного напряжения в точке тела, где плоскость и площадка имеют общую нормаль v. Вычисление $|\text{grad}\sigma_v|$ в некоторых задачах проще, чем $|\text{grad}\sigma_1|$ в [7, 8]. Относительный градиент g_v обратно пропорционален условному размеру зоны концентрации напряжений Δ ($g_v = 1/\Delta$) и находится с помощью решения соответствующей задачи теории упругости. Выражение для эффективного напряжения записывается в виде $\sigma_e = \sigma_1 / (1 - \beta + \sqrt{\beta^2 + L_1 g_v})$, где L_1 — параметр, имеющий размерность длины и характеризующий неоднородность (дефектность) материала; β — неотрицательный безразмерный параметр, который для цементного материала GF-177 принят равным нулю.

Параметр L_1 находится в [7] из условия согласования градиентного критерия с линейной механикой разрушения и выражается через предел прочности $\sigma_{\rm B}$ и критический коэффициент интенсивности напряжения K_{lc} ($L_1 = (2 / \pi) K_{lc}^2 / \sigma_{\rm B}^2$).

Разрушение в окрестности данной точки начинается при достижении эффективным напряжением σ_e предельного растягивающего напряжения и первоначально распространяется по площадке действия максимального растягивающего напряжения. При гидроразрыве здесь действует окружное напряжение σ_{φ} .

Согласно решению Ламе, при давлении *p* на поверхность кругового отверстия в бесконечной среде окружное и радиальное напряжения определяются по формулам $\sigma_{\varphi} = pa^2 / r^2$ и $\sigma_r = -pa^2 / r^2$. В этом случае растягивающее напряжение $\sigma_v = \sigma_{\varphi}$. Характерное распределение такого напряжения по радиусу показано на рис. 26. При отсутствии осевых усилий и напряжений, т. е. при $\sigma_z = 0$, наблюдается плоская деформация $\varepsilon_z = 0$, так как $\varepsilon_z = [\sigma_z - v(\sigma_r + \sigma_{\varphi})] / E$.

Вычисление относительного градиента дает $g_v = 4 / d$, т. е. $\Delta = d / 4$. Диаметр отверстия d входит в градиентное условие разрушения, что позволяет описать масштабный эффект при разрушении в условиях неоднородного напряженного состояния. В классических условиях разрушения размер отверстия не учитывается.

Совместное применение метода граничных элементов и градиентного критерия разрушения. Модификацией программы [14] в [15–17] реализован алгоритм совместного использования метода граничных элементов (в варианте метода фиктивных нагрузок) и градиентного критерия разрушения. Для задачи гидроразрыва толстенного цилиндра алгоритм проверен сравнением численных результатов и полученных с помощью решения задачи Ламе для толстостенной трубы. Внешний и внутренний контуры цилиндра разбивались на 360 элементов. В качестве предельного растягивающего напряжения при чистом сдвиге использовалось $\sigma^* = 2.83$ МПа, полученное при пересечении луча, проходящего из начала координат на рис. 8 под углом 45° и соответствующего нагружению при гидроразрыве, с прямой, проведенной через две экспериментальные точки (пределы прочности при сжатии и бразильском тесте).

Для определения давления, при котором начнется разрушение при гидроразрыве, эффективное напряжение σ_e в градиентном критерии сравнивалось с σ^* . Неоднородность напряженного состояния в окрестности отверстия приводит к уменьшению σ_e по сравнению с окружным напряжением σ_{φ} и увеличению предельного давления p^* по сравнению с σ^* . Совместное применение метода граничных элементов и градиентного критерия разрушения дает предельное давление $p^* = 3.55$ МПа, близкое к среднему экспериментальному значению $p^* = 3.70$ МПа (табл. 1).

Данные по разрушению толстостенной трубы D/d = 10 давлением зависят от времени выдержки материала от заливки до испытания: чем дольше выдержаны образцы, тем выше предельное давление. Данные разрушения составной трубы (рис. 9, маркер 3) смещаются в область увеличенных по модулю напряжений.

Влияние интервала выдержки образцов на их прочность. На рис. 10 приведены предельные главные напряжения для пяти видов нагружения. Отмечается тенденция к росту критических растягивающих или сжимающих напряжений с увеличением интервала выдержки образцов после отливки. Здесь представлены образцы различных типов и партий. Прочность на сжатие цемента растет быстрее, чем прочность на растяжение. Маркером 4 обозначен случай составной трубы под давлением, предельные напряжения выше, чем в случае гидроразрыва цементной трубы, что объясняется проникновением жидкости в материал образца. Линиями обозначены аппроксимации экспериментальных значений при помощи линейных функций.

Рис. 10. Зависимость предельных значений главных напряжений от времени выдержки образцов после отливки: *I* — гидроразрыв цементных труб; *2* — растяжение и бразильский тест; *3* — сжатие; *4* — составная труба под давлением

выводы

На установке, создающей высокое давление масла, проведено экспериментальное исследование гидроразрыва толстостенных цилиндров с центральным круговым отверстием. Цилиндры изготовлены из материала GF-177 на основе цемента. Получена зависимость предельного растягивающего окружного напряжения от времени выдержки цемента. Определены предельные напряжения в материале при двух видах напряженного состояния: сжатии и сложном напряженном состоянии в условиях сжатия сплошного цилиндра по диаметру. Установлен критический коэффициент интенсивности напряжений материала GF-177. С помощью метода граничных элементов и градиентного критерия разрушения выполнено моделирование процесса гидроразрыва с учетом неоднородности напряженного состояния вблизи отверстия. Проведено сравнение результатов расчетов предельного давления с аналитическими значениями на основе решения Ламе и экспериментальными данными.

СПИСОК ЛИТЕРАТУРЫ

 Haimson B. C. Scale effects in rock stress measurements, Scale effects in rock masses, Proc. 1st Int. Workshop on scale effects in rock masses, Loen, Norway, 7–8 June 1990, Rotterdam, Brookfield, Balkema, 1990. — P. 89–101.

- Haimson B. C. and Zhao Z. Effect of borehole size and pressurization rate on hydraulic fracturing breakdown pressure, Rock mechanics as a multidisciplinary science, Proc. 32nd US Symp., Norman, 10–12 July 1991, Rotterdam, Balkema, 1991. — P. 191–199.
- Cuisiat F. D. and Haimson B. C. Scale effects in rock mass stress measurements, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1992, Vol. 29, No. 2. — P. 99–117.
- **4.** Сукнев С. В. Разрушение квазихрупкого геоматериала с круговым отверстием при неравномерно распределенном сжатии // ПМТФ. 2019. Т. 60. № 6. С. 162–172.
- 5. Сукнев С. В. Хрупкое и квазихрупкое разрушение геоматериалов с круговым отверстием при неравнокомпонентном сжатии // ФТПРПИ. 2020. № 2. С. 19–30.
- 6. Whitney J. M. and Nuismer R. J. Stress fracture criteria for laminated composites containing stress concentrations, J. Compos. Mater., 1974, Vol. 8, No. 3. P. 253–265.
- 7. Леган М. А. О взаимосвязи градиентных критериев локальной прочности в зоне концентрации напряжений с линейной механикой разрушения // ПМТФ. — 1993. — Т. 34. — № 4. — С. 146–154.
- 8. Леган М. А. Определение разрушающей нагрузки, места и направления разрыва с помощью градиентного подхода // ПМТФ. — 1994. — Т. 35. — № 5. — С. 117–124.
- **9.** Ефимов В. П. Испытания горных пород в неоднородных полях растягивающих напряжений // ПМТФ. 2013. Т. 54. № 5. С. 199–209.
- **10.** Ефимов В. П. Определение прочности горных пород на растяжение по результатам испытаний дисковых образцов с центральным отверстием // ФТПРПИ. 2016. № 5. С. 54–60.
- 11. Ефимов В. П. Особенности разрушения образцов хрупких горных пород при одноосном сжатии с учетом характеристик зерен // ФТПРПИ. 2018. № 2. С. 18–25.
- **12.** Филоненко-Бородич М. М. Курс сопротивления материалов. Т. 2. М.: Гостехиздат, 1949. 528 с.
- **13.** Новиков Н. В., Майстренко А. Л. Трещиностойкость кристаллических и композиционных сверхтвердых материалов // Физ.-хим. механика материалов. — 1983. — Т. 19. — № 5. — С. 46-53.
- **14. Крауч С., Старфилд А.** Методы граничных элементов в механике твердого тела. М.: Мир, 1987. 328 с.
- **15. Шеремет А. С., Леган М. А.** Применение градиентного критерия прочности и метода граничных элементов к плоской задаче о концентрации напряжений // ПМТФ. 1999. Т. 40. № 4. С. 214–221.
- 16. Леган М. А., Блинов В. А. Расчет на прочность цилиндров с отверстием при совместном использовании метода граничных элементов и нелокальных критериев разрушения // Вычисл. механика сплошных сред. 2017. Т. 10. № 3. С. 332–340.
- 17. Blinov V. A. and Legan M. A. Hydraulic fracturing of cylindrical concrete bodies in a non-uniform stress field, J. of Physics, Conf. Series, 2019, Vol. 1268. Art. 012010.

Поступила в редакцию 20/VI 2020 После доработки 30/VIII 2020 Принята к публикации 11/IX 2020