УДК 535.375.56

Влияние гелия на спектр комбинационного рассеяния метана в диапазоне 2500-3300 см⁻¹

А.С. Таничев¹, Д.В. Петров^{1, 2}, И.И. Матросов¹, К.К. Шарыбкина¹*

¹Институт мониторинга климатических и экологических систем СО РАН 634055, г. Томск, пр. Академический, 10/3 ²Национальный исследовательский Томский государственный университет 634050, г. Томск, пр. Ленина, 36

Поступила в редакцию 2.04.2021 г.

Представлены полученные с помощью спектроскопии комбинационного рассеяния света результаты измерений положения максимума и полуширины Q-ветви полосы v_1 метана, а также отношения интенсивностей Q-ветвей его полос v_3 и $2v_2$ в смеси метан—гелий при различных давлениях и концентрациях. Получена эмпирическая модель для оценки содержания гелия в среде метана посредством измерения указанных выше параметров. Установлено, что использование полуширины Q-ветви полосы v_1 позволяет определить концентрацию гелия с погрешностью менее 1%. Рассмотрены пути развития и улучшения точности этого метода.

Ключевые слова: метан, гелий, комбинационное рассеяние света, газоанализ; methane, helium, Raman spectroscopy, gas analysis.

Введение

Благодаря появлению в последние десятилетия малогабаритных твердотельных лазеров с высокой выходной мощностью и высокочувствительных многоканальных фотоприемников в настоящее время активно развивается газоанализ, основанный на спектроскопии комбинационного рассеяния света (КР) [1–8]. Одна из областей, где метод КР весьма перспективен – анализ состава природного газа (ПГ). Это объясняется рядом преимуществ метода КР перед газовой хроматографией, которая на сегодняшний день является базовым методом измерения состава ПГ: отсутствие расходных материалов, высокое быстродействие, а также возможность контроля всех молекулярных составляющих с помощью одного прибора.

Один из компонентов ПГ — гелий (Не), концентрация которого может достигать 7% [9]. Но поскольку Не в ПГ находится в атомарном состоянии, он не имеет спектра КР, следовательно, его содержание не может быть измерено с помощью классического подхода, основанного на использовании интенсивности спектральных линий. Этот недостаток КР-газоанализаторов ограничивает их потенциал. Однако, согласно данным D. Pieroni [10], среда Не оказывает значительное влияние на спектральные характеристики *Q*-ветви полосы v_1 метана CH₄ за счет эффекта смешения линий. Отметим, что указанная полоса является самой интенсивной в спектре КР СН₄ и поэтому наиболее предпочтительна при решении прикладных задач по анализу метансодержа-

Для проведения исследований собрана экспериментальная установка, позволяющая регистрировать спектры КР с разрешением до 0,5 см⁻¹. В качестве источника монохроматического излучения применялся одномодовый твердотельный лазер SLN-532-5000 (Cnilaser, Китай), обеспечивающий в непрерывном режиме выходную мощность 5 Вт на длине волны 532,094 нм (полуширина линии генерации < 10 фм). Рассеянный свет собирался под углом 90° к направлению распространения лазерного луча. Для получения спектров использован дифракционный монохроматор МДР-23 (фокусное расстояние — 600 мм, относительное отверстие – 1:6), оснащенный ПЗС-матрицей Hamamatsu S10141 (2048 × 512 пикселей). При использовании дифракционных решеток 1200 и 2400 штр/мм ширина одновременно регистрируемого диапазона составила 750 и 250 см⁻¹ соответственно. Частотная калибровка спектрометра выполнена с помощью частотных сдвигов линий полосы v₃ CH₄, приведенных в [15].

^{*} Александр Сергеевич Таничев (tanichev_aleksandr@ mail.ru); Дмитрий Витальевич Петров (dpetrov@imces.ru); Иван Иванович Матросов (mii@imces.ru); Кристина Константиновна Шарыбкина (elgar.kelgar@yandex.ru).

щих сред с помощью спектроскопии КР [11–14]. Мы полагаем, что эффекты изменения спектральных характеристик ее неразрешенной *Q*-ветви, отмеченные в [10], могут быть положены в основу методики определения концентрации Не в ПГ. В связи с этим цель настоящей работы – оценка перспектив указанного подхода на примере исследования спектров КР смесей СН₄—Не при различных концентрациях и давлениях. **Эксперимент**

[©] Таничев А.С., Петров Д.В., Матросов И.И., Шарыбкина К.К., 2021

При использовании дифракционной решетки 2400 штр/мм на экспериментальной установке зарегистрированы спектры КР смесей CH₄-He с концентрациями Не 13 и 25% при давлениях 10, 20, 30, 40 и 50 атм. Спектральное разрешение в данном случае составляло 0,5 см⁻¹ при одновременно регистрируемом диапазоне 2800-3050 см⁻¹. Дополнительно зарегистрирован аналогичный набор спектров (но в смеси СН₄—Не с концентрацией Не 50%) с использованием дифракционной решетки 1200 штр/мм. Спектральное разрешение составляло ~1 см⁻¹ при одновременно регистрируемом диапазоне 2550—3300 см⁻¹. Цель получения набора экспериментальных данных с меньшим разрешением заключалась в необходимости увеличения одновременно регистрируемого спектрального диапазона для оценки перераспределения интенсивностей между полосами v_1 (2917 см⁻¹), $2v_2$ (3067 см⁻¹) и 2v₄ (2587 см⁻¹), находящимися в резонансе Ферми [16].

Таким образом, из первого набора спектров определены положения максимумов и полуширины *Q*-ветвей полосы v₁ CH₄, а из второго — отношения интенсивностей *Q*-ветвей полос v₃ и 2v₂, 2v₄ и v₁. Чистота каждого используемого газа была > 99,99%. Температура при измерениях была близка к 300 К. Время регистрации каждого спектра составляло 100 с.

Обсуждение результатов

В полученных спектрах наблюдаются сдвиг в область меньших частот и уширение контура Q-ветви полосы v_1 при увеличении давления, ранее отмеченные в [14, 17, 18]. Также хорошо видно, что увеличение концентрации Не в смеси с CH₄ при эквивалентных давлениях приводит к меньшему уширению и к сдвигу контура в область больших частот (рис. 1).

Рис. 1. Нормированные спектры КР СН₄ в диапазоне 2914—2919 см⁻¹ при давлении 50 атм и различных концентрациях Не в смеси

В дополнение к этим эффектам мы обратили внимание на отношение пиковых интенсивностей *Q*-ветвей полос v_3 (3020 см⁻¹) и 2 v_2 (3067 см⁻¹). Ранее [19, 20] было предложено использовать это отношение для бесконтактного определения давления метансодержащих включений в минералах. Природа его изменения обусловлена двумя причинами. Вопервых, с увеличением ширин линий уменьшается пиковая интенсивность *Q*-ветви полосы v_3 . Вовторых, при изменении условий, в которых находится CH₄, меняется относительная интенсивность его полосы 2 v_2 [17, 21]. Наиболее вероятно, что это связано с изменением условий взаимодействия полос 2 v_2 и v_1 посредством резонанса Ферми.

Анализ полученных спектров показал, что при фиксированном давлении отношение $I(v_3)/I(2v_2)$ увеличивалось с ростом концентрации Не (рис. 2). В свою очередь, анализ отношения $I(2v_4)/I(v_1)$, зависящего от условий, в которых находится CH₄, согласно [17, 21], показал, что при различной концентрации Не оно изменялось в пределах погрешности измерений.

Рис. 2. Спектры КР СН₄ в диапазоне 2930–3120 см⁻¹ при давлении 50 атм и различных концентрациях Не. Спектры нормированы на интегральную интенсивность

На рис. З показаны измеренные положения максимума и полуширины Q-ветви полосы v_1 , а также отношения интенсивностей $I(v_3)/I(2v_2)$ при различных давлениях и концентрациях смеси. Видно, что среда Не вносит изменения в каждый из измеренных параметров, при этом, рассматривая положение и полуширину Q-ветви полосы v_1 , этот эффект тем больше, чем больше давление.

Рассмотрим алгоритм решения обратной задачи — оценки концентрации Не из смеси СН₄—Не. Анализ зависимостей измеренных параметров Не от его содержания в смеси (при фиксированном давлении) показал, что они могут быть приближенно описаны линейной функцией

$$X = A + BC_{\rm He},\tag{1}$$

где X — положение максимума Q-ветви $v_1 - \omega(v_1)$ либо ее полуширина на полувысоте $\Gamma(v_1)$, либо отношение пиковых интенсивностей $I(v_3)/I(2v_2)$; $C_{\rm He}$ — концентрация Не в смеси [0...1]; A и B —

Таничев А.С., Петров Д.В., Матросов И.И., Шарыбкина К.К.

Рис. 3. Положение максимума (*a*) и полуширина (*б*) *Q*-ветви полосы v₁, а также отношение пиковых интенсивностей полос v₃ и 2v₂ CH₄ (*b*) при различных давлениях и концентрациях Не

коэффициенты, являющиеся функциями давления, различными для каждого параметра.

Рассмотрим методику получения *A* и *B*. Согласно рис. З зависимости каждого параметра от давления *P* в чистом CH₄ (коэффициент *A*) являются нелинейными и могут быть приближенно описаны полиномами второго порядка

$$X = aP^2 + bP + c. \tag{2}$$

С учетом этого выражение (1) примет вид

$$X = aP^{2} + bP + c + (dP^{2} + eP + f)C_{\text{He}},$$
 (3)

где a, b, c, d, e, f — коэффициенты полинома, который является функцией двух переменных (давление смеси и концентрация He). Указанные коэффициенты для $\omega(v_1)$, $\Gamma(v_1)$ и $I(v_3)/I(2v_2)$ были определены посредством аппроксимации полиномом (3) соответствующих экспериментальных данных. Полученные значения приведены в таблице. Таким образом, зная давление смеси и измерив любой из параметров $\omega(v_1)$, $\Gamma(v_1)$ или $I(v_3)/I(2v_2)$, с помощью выражения (3) можно определить концентрацию He в смеси с CH₄.

Оценим погрешность этого подхода. Посредством анализа набора спектров, зарегистрированных при одинаковых условиях, установлено, что измеренные значения положения максимума и полуширины полосы v_1 находятся в пределах $\pm 0,02$ и $\pm 0,002$ см⁻¹ соответственно. При изменении давления в рассматриваемом диапазоне эти погрешности изменяются пренебрежимо мало. Ошибка вычисления отношения интенсивностей $I(v_3)/I(2v_2)$ уменьшается с ростом давления ввиду улучшения отношения сигнал/ шум. В нашем случае она составила ~2% при P = = 10 атм и ~0,7% при P = 50 атм. Принимая во внимание погрешности определения положения максимума и полуширины, а также зависимости, приведенные на рис. 3, мы определили погрешности измерения концентрации Не в смеси с СН₄ с использованием каждого параметра (рис. 4). Полученные результаты свидетельствуют о том, что для каждого подхода точность будет увеличиваться с увеличением давления, при этом наиболее предпочтительно использование полуширин. Последнее объясняется наименьшей ошибкой измерения этого параметра, а также тем, что его зависимость от концентрации наиболее близка к линейной. В нашем случае при P = 50 атм расчетная погрешность определения концентрации Не составила ~0,9%.

Мы полагаем, что представленный в работе метод оценки содержания Не в бинарной смеси с CH_4 может быть расширен и на ПГ, поскольку CH_4 в нем является доминирующим компонентом. Для этого,

Коэффициенты полинома (3) для расчета положения максимума Q-ветви полосы v_1 , ее полуширины и отношения пиковых интенсивностей $I(v_3)/I(2v_2)$

X	a	b	С	d	e	f
$\omega(v_1)$	$-1,11 \cdot 10^{-4}$	-0,0114	2916,860	$1,479\cdot 10^{-4}$	0,016	-0,061
$\Gamma(v_1)$	$1,35 \cdot 10^{-5}$	0,0044	0,293	$-1,744 \cdot 10^{-5}$	-0,0044	0,016
$I(v_3)/I(2v_2)$	$9,81\cdot 10^{-4}$	0,0970	3,770	$-3,625 \cdot 10^{-4}$	0,021	0,295

Влияние гелия на спектр комбинационного рассеяния метана в диапазоне 2500-3300 см⁻¹

Рис. 4. Погрешность определения концентрации Не в смеси с СН₄ при различном давлении с использованием положения максимума ω(v₁) (точки), полуширины Γ(v₁) (квадраты) и отношения пиковых интенсивностей *I*(v₃)/*I*(2v₂) (треугольники)

помимо давления, необходимо знать концентрации молекулярных составляющих ПГ и аналогичные зависимости влияния каждого компонента на измеряемый параметр в спектре CH₄ (положение максимума *Q*-ветви полосы v_1 , ее полуширина либо отношение интенсивностей $I(v_3)/I(2v_2)$). Таким образом, техника измерения содержания молекулярных соединений посредством спектроскопии КР на сегодняшний день достаточно хорошо отработана [6–8], что в перспективе позволит с помощью КР-спектрометра получать оценки содержания Не в ПГ.

Заключение

В результате проведенных исследований установлено, что, зная давление смеси CH_4 —Не и измеряя положения максимума Q-ветви полосы v_1 метана либо ее полуширины, либо отношения пиковых интенсивностей $I(v_3)/I(2v_2)$, возможно определить концентрацию Не. Точность этой процедуры увеличивается с ростом давления. В нашем случае наименьшая расчетная погрешность определения концентрации гелия составила ~0,9% в случае измерения полуширины Q-ветви полосы v_1 при P = 50 атм. Мы полагаем, что такой подход в перспективе может быть применен и для измерения Не в природном газе.

Стоит отметить, что точность измерения спектральных параметров Q-ветви полосы v_1 может быть значительно улучшена при использовании спектрометра с большей дисперсией. В свою очередь, регистрация спектров с более высоким отношением сигнал/шум позволит повысить точность метода, основанного на измерении отношения интенсивностей, путем использования большего времени регистрации спектров, фотодетектора с меньшим уровнем шумов либо более светосильного спектрометра. Мы полагаем, что точность измерения Не в CH_4 или природном газе также может быть увеличена посредством одновременного учета всех измеряемых параметров с помощью современных алгоритмов обработки данных, таких как машинное обучение и нейронные сети.

Работа выполнена при финансовой поддержке РФФИ (грант № 19-42-700006).

- Knebl A., Yan D., Popp J., Frosch T. Fiber enhanced Raman gas spectroscopy // Trends Anal. Chem. 2018. V. 103. P. 230–238.
- Wang P., Chen W., Wan F., Wang J., Hu J. Cavityenhanced Raman spectroscopy with optical feedback frequency-locking for gas sensing // Opt. Express. 2019. V. 27, N 23. P. 33312–33325.
- 3. Schlüter S., Krischke F., Popovska-Leipertz N., Seeger T., Breuer G., Jeleazcov C., Schüttler J., Leipertz A. Demonstration of a signal enhanced fast Raman sensor for multi-species gas analyses at a low pressure range for anesthesia monitoring // J. Raman Spectrosc. 2015. V. 46, N 8. P. 708–715.
- Wen C., Huang X., Shen C. Multiple-pass-enhanced multiple-point gas Raman analyzer for industrial process control applications // J. Raman Spectrosc. 2020. V. 51, N 10. P. 2046–2052.
- Petrov D.V., Matrosov I.I., Zaripov A.R., Maznoy A.S. Application of Raman spectroscopy for determination of syngas composition // Appl. Spectrosc. 2020. V. 74, N 8. P. 948–953.
- Buldakov M.A., Korolev B.V., Matrosov I.I., Petrov D.V., Tikhomirov A.A. Raman gas analyzer for determining the composition of natural gas // J. Appl. Spectrosc. 2013. V. 80, N 1. P. 124–128.
- Petrov D.V., Matrosov I.I. Raman Gas Analyzer (RGA): Natural gas measurements // Appl. Spectrosc. 2016. V. 70, N 10. P. 1770–1776.
- Gao Y., Dai L.-K., Zhu H.-D., Chen Y.-L., Zhou L. Quantitative analysis of main components of natural gas based on Raman spectroscopy // Chinese J. Anal. Chem. 2019. V. 47, N 1. P. 67–76.
- 9. Grynia E., Griffin P.J. Helium in natural gas occurrence and production // J. Nat. Gas Eng. 2017. V. 1, N 2. P. 163–215.
- Pieroni D., Hartmann J.M., Chaussard F., Michaut X., Gabard T., Saint-Loup R., Berger H., Champion J.P. Experimental and theoretical study of line mixing in methane spectra. III. The Q branch of the Raman v₁ band // J. Chem. Phys. 2000. V. 112, N 3. P. 1335–1343.
- 11. Zhang J., Qiao S., Lu W., Hu Q., Chen S., Liu Y. An equation for determining methane densities in fluid inclusions with Raman shifts // J. Geochem. Explor. 2016. V. 171. P. 20–28.
- 12. Lin F., Bodnar R.J., Becker S.P. Experimental determination of the Raman CH₄ symmetric stretching (v_1) band position from 1–650 bar and 0.3–22 °C: Application to fluid inclusion studies // Geochim. Cosmochim. Acta. 2007. V. 71, N 15. P. 3746–3756.
- Shang L., Chou I.-M., Burruss R.C., Hu R., Bi X. Raman spectroscopic characterization of CH₄ density over a wide range of temperature and pressure // J. Raman Spectrosc. 2014. V. 45, N 8. P. 696–702.
- 14. Seitz J.C., Pasteris J.D., Chou I.-M. Raman spectroscopic characterization of gas mixtures; I. Quantitative composition and pressure determination of CH₄, N₂ and their mixtures // Am. J. Sci. 1993. V. 293, N 4. P. 297–321.
- Herranz J., Stoicheff B.P. High-resolution Raman spectroscopy of gases. Part XVI. The v₃ Raman band of methane // J. Mol. Spectrosc. 1963. V. 10, N 1–6. P. 448–483.

Таничев А.С., Петров Д.В., Матросов И.И., Шарыбкина К.К.

- 16. Lolck J.E., Robiette A.G. A theoretical model for the interacting upper states of the v₁, v₃, 2v₂, v₂ + v₄, and 2v₄ bands in methane // J. Mol. Spectrosc. 1981. V. 88, N 1. P. 14–29.
- Petrov D.V. Pressure dependence of peak positions, half widths, and peak intensities of methane Raman bands (v₂, 2v₄, v₁, v₃, and 2v₂) // J. Raman Spectrosc. 2017. V. 48, N 11. P. 1426–1431.
- 18. Lu W., Chou I.-M., Burruss R.C., Song Y. A unified equation for calculating methane vapor pressures in the CH₄-H₂O system with measured Raman shifts // Geochim. Cosmochim. Acta. 2007. V. 71, N 16. P. 3969–3978.
- 19. Brunsgaard Hansen S., Berg R.W., Stenby E.H. How to determine the pressure of a methane-containing gas mixture by means of two weak Raman bands, v_3 and $2v_2$ // J. Raman Spectrosc. 2002. V. 33, N 3. P. 160–164.
- 20. Wang M., Lu W., Li L., Qiao S. Pressure and temperature dependence of the Raman peak intensity ratio of asymmetric stretching vibration (v_3) and asymmetric bending overtone $(2v_2)$ of methane // Appl. Spectrosc. 2014. V. 68, N 5. P. 536–540.
- 21. Petrov D.V, Matrosov I.I., Tanichev A.S. Intensities of $2v_4$ and $2v_2$ methane Raman bands as a function of pressure // Proc. SPIE. 2020. V. 11560. P. 115600A.

A.S. Tanichev, D.V. Petrov, I.I. Matrosov, K.K. Sharybkina. Effect of helium on the Raman spectrum of methane in the range 2500-3300 cm⁻¹.

The peak positions and half-widths of the Q-branch of the v_1 band, as well as the ratios of intensities of the Q-branches of v_3 and $2v_2$ bands of methane in a methane—helium mixture are measured at various pressures and concentrations. An empirical model has been developed for estimation of the helium concentration in a methane-bearing medium by measuring these spectral parameters. The error in the He concentration is found to be less than 1% when using the v_1 band half-width. The ways of developing this technique and increasing its accuracy are considered.