УДК 622.179.19

ЗАКОНОМЕРНОСТИ АКУСТИЧЕСКОЙ ЭМИССИИ КАМЕННОЙ СОЛИ ПРИ РАЗЛИЧНЫХ СКОРОСТЯХ ОДНООСНОГО ДЕФОРМИРОВАНИЯ И ТЕМПЕРАТУРНОМ ВОЗДЕЙСТВИИ

В. Л. Шкуратник, О. С. Кравченко, Ю. Л. Филимонов*

Национальный исследовательский технологический университет "МИСиС", 119049 Москва, Россия

* ООО "Газпром геотехнологии", 123290 Москва, Россия

E-mails: ftkp@mail.ru, o.kravchenko.msu@inbox.ru, y.filimonov@gazpromgeotech.ru

Проведены измерения активности акустической эмиссии, продольных и объемных деформаций в образцах каменной соли, подвергаемых одноосному механическому нагружению с постоянной скоростью деформирования и термическому воздействию. Проанализированы особенности акустической эмиссии при деформировании при различных термобарических условиях эксперимента. Показано, что в отличие от параметров деформации изменение активности акустической эмиссии на границах указанных стадий имеет немонотонный характер, а также особенности, позволяющие достаточно точно определять каждую стадию и оценивать упругие и прочностные свойства каменной соли.

Ключевые слова: каменная соль, акустическая эмиссия, термобарическое воздействие, стадии деформирования.

DOI: 10.15372/PMTF20200320

Введение. Каменная соль является уникальным геоматериалом, для которого характерны высокие прочность и пластичность, а также чрезвычайно низкие проницаемость и пористость. Она легко растворяется и имеет выраженные реологические свойства даже при незначительных напряжениях. Отмеченные особенности обусловливают перспективность создания в отложениях каменной соли искусственных резервуаров — подземных хранилищ газа (ПХГ), герметичность которых исключает проникание хранимого продукта в окружающий массив.

Для ПХГ характерны значительная глубина залегания, сложная форма, чрезвычайно большие объемы, отсутствие крепления, значительные сроки эксплуатации, а также повышенные требования к длительной функциональной и структурной устойчивости. Возможности управления такой устойчивостью в процессе эксплуатации хранилища ограничены и сводятся в основном к созданию внутри него повышенного давления, противодействующего сжимающим силам приконтурного массива. Поэтому устойчивость обеспечивается главным образом за счет использования на стадии строительства ПХГ соответствующих проектных решений, принимаемых на основе информации о механических свойствах и состоянии вмещающей геологической среды. Источником этой информации являются, как правило, лабораторные исследования, включающие измерения деформации механически нагружаемых образцов [1].

Вследствие указанных выше специфических свойств каменной соли измерения деформации образцов проводятся с низкой точностью и являются трудоемкими. Кроме того, такие измерения, всегда выполняемые на поверхности образца, не позволяют оценивать динамику структурной поврежденности во всем исследуемом объеме геоматериала. Это обусловливает проведение акустико-эмиссионных измерений при механическом нагружении каменной соли, что дает возможность исследовать динамику ее поврежденности, идентифицировать стадии деформирования и ползучести, определять наиболее важные физико-механические свойства [2–5]. Существуют различные способы обработки результатов акустико-эмиссионных измерений [6, 7]. Однако в проводимых до настоящего времени акустико-эмиссионных исследованиях каменной соли не учитывались реальные термобарические условия, в которых она находится в зоне залегания ПХГ. Температура в этой зоне может превышать 70 °C [8]. Кроме того, при закачке и откачке хранимого продукта могут существенно изменяться скорости деформирования приконтурного массива. Известно, что термобарические условия испытаний могут оказывать существенное влияние практически на все физико-механические и реологические свойства соляных пород, на динамику их поврежденности при деформировании, а значит, и на акустико-эмиссионные характеристики [9–15]. В данной работе рассматриваются закономерности изменения активности акустической эмиссии (АЭ), а также продольных и поперечных деформаций образцов каменной соли при больших температурах и различных скоростях их деформирования.

1. Постановка экспериментов. Исследовалась выборка из восьми цилиндрических образцов каменной соли высотой 80 мм и диаметром 40 мм, отобранных с глубины залегания 950 м в районе строительства Калининградского ПХГ. Образцы имели равномернозернистую кристаллическую структуру без видимых инородных включений и следующие осредненные физико-механические характеристики: плотность $\rho = 2140$ кг/м³, модуль упругости $E_y = 26\,000$ МПа, модуль деформации $E_{\pi} = 1445$ МПа, предел прочности при сжатии $\sigma_c = 24,2$ МПа, предел прочности при растяжении $\sigma_p = 2,2$ МПа, скорости распространения продольных и поперечных упругих волн $V_p = 4,2$ км/с и $V_s = 2,2$ км/с соответственно.

Выборка была разделена на две группы по три образца. Образцы первой группы подвергались одноосному нагружению вплоть до разрушения с постоянной скоростью деформирования $\dot{\varepsilon}_1 = 0,3$ мм/мин при определенной температуре для каждого образца $T_1 = 23$ °C, $T_2 = 40$ °C, $T_3 = 60$ °C. Образцы второй группы испытывались при тех же температурных условиях, что и образцы первой группы. Однако скорость их деформирования составляла $\dot{\varepsilon}_2 = 0,03$ мм/мин. В ходе каждого эксперимента измерялись и регистрировались температуры образцов T_i , одноосное напряжение σ_1 , активность \dot{N}_{Σ} возникающей АЭ, а также продольные ε_1 и поперечные $\varepsilon_2 = \varepsilon_3$ деформации.

Экспериментальные исследования проводились с использованием установки, схема которой представлена на рис. 1.

Образец каменной соли с закрепленными на нем тензодатчиками продольных и поперечных деформаций и датчиком температуры помещался в цилиндрическую камеру. Нагрев этой камеры до заданной температуры осуществлялся размещенным по ее периметру электронагревательным элементом, подключенным к программируемому терморегулятору. С помощью электродвигателя силовой установки Geotek осуществлялось перемещение рамы в направлении, показанном стрелками на рис. 1. Через датчик силы и защитный корпус это перемещение передавалось исследуемому образцу, создавая в нем напряжения, вызывающие сигналы акустической эмиссии. Эти сигналы, принятые размещенным в корпусе пьезоэлектрическим преобразователем, подавались на акустико-эмиссионную измери-

Рис. 1. Схема экспериментальной установки для измерения и регистрации напряжений, деформаций и акустической эмиссии при постоянной скорости деформирования образцов и различных значениях температуры:

1 — образец каменной соли, 2, 3 — тензодатчики продольных деформаций, 4, 5 — тензодатчики поперечных деформаций, 6 — датчик температуры, 7 — цилиндрическая камера, 8 — электронагревательный элемент, 9 — программируемый терморегулятор, 10 — электродвигатель силовой установки Geotek, 11 — рама, 12 — датчик силы, 13 — защитный корпус, 14 — пьезоэлектрический преобразователь, 15 — акустико-эмиссионная измерительная система, 16 — измерительные мосты, 17 — компьютер

тельную систему A-line 32D. Деформации тензодатчиков 2–5 с помощью измерительных мостов преобразовывались в электрические сигналы, которые подавались на компьютер. На него же поступали сигналы с датчиков температуры и силы. Таким образом осуществлялась синхронная регистрация указанных выше параметров T_i , σ_1 , \dot{N}_{Σ} , ε_1 , ε_2 .

2. Результаты экспериментов и их обсуждение. С использованием результатов проведенных экспериментов для каждого значения температуры T_i и скоростей деформирования $\dot{\varepsilon}_1$ и $\dot{\varepsilon}_2$ получены представленные на рис. 2 зависимости продольной ε_1 и объемной $\varepsilon_v = \varepsilon_1 + 2\varepsilon_2$ деформаций, а также активности АЭ \dot{N}_{Σ} образца каменной соли от напряжения σ_1 .

Анализ экспериментальных данных показал, что изменение акустической эмиссии в процессе деформирования каменной соли имеет немонотонный характер и она зависит от температуры нагрева образцов и скорости их деформирования, причем эти особенности для каждого образца индивидуальны. В то же время на всех графиках можно выделить четыре стадии деформирования: начальную, линейно-упругую, упругопластическую, разрушения. На каждой стадии имеют место определенные структурные изменения материала образцов.

На стадии I происходит локальное разрушение поверхности образца вследствие несовершенства его поверхности и формы, а также незначительное уплотнение, обусловленное закрытием пор и трещин. На стадии II образец испытывает линейно-упругое деформирование без существенных структурных изменений. Стадия III характеризуется началом трещинообразования, а стадия IV — дальнейшим ростом трещин и разрушением образца. Подробное описание изменения активности АЭ \dot{N}_{Σ} и деформаций ε_1 , ε_v на указанных стадиях при различных значениях температуры для $\dot{\varepsilon}_1 = 0,3$ мм/мин приведено в табл. 1, для $\dot{\varepsilon}_2 = 0,03$ мм/мин — в табл. 2.

Рис. 2. Зависимости $\varepsilon_1(\sigma_1)$ (1), $\varepsilon_v(\sigma_1)$ (2) и $\dot{N}_{\Sigma}(\sigma_1)$ (3), полученные в процессе нагружения образцов каменной соли со скоростями деформирования $\dot{\varepsilon}_1 = 0,3$ мм/мин (a, e, d) и $\dot{\varepsilon}_2 = 0,03$ мм/мин (b, e, e) при различных значениях температуры: a, b - T = 23 °C, e, e - T = 40 °C, d, e - T = 60 °C; I–IV — стадии деформирования (I —

начальная, II — линейно-упругая, III — упругопластическая, IV — разрушения)

193

Таблица 1

Изменение деформации и активности АЭ образцов каменной соли

на различных стадиях деф	рормирования при $arepsilon_{1}$	$_1 = 0.3 \text{ MM}/$	мин и различных	значениях температурь
--------------------------	----------------------------------	------------------------	-----------------	-----------------------

Стадия	$\Delta \sigma(\sigma_{\rm c})$, ΜΠα	$arepsilon_1(\sigma_1)$	$-arepsilon_v(\sigma_1)$	$\dot{N}_{\Sigma}(\sigma_1),$ имп./с		
	$T = 23 \ ^{\circ}\mathrm{C}$					
Начальная	$0 \div 0,\!08$	Отсутствие изменений	Отсутствие изменений	Линейное увеличение от 0 до 130 имп./с		
Линейно- упругая	$0,08 \div 0,42$	Экспоненциальное увеличение в четыре раза	Нелинейное увеличение в два раза	Экспоненциальное увеличение от 130 до 200 имп./с		
Упруго- пластическая	$0,\!42 \div 0,\!84$	Экспоненциальное увеличение в 4,6 раза	Нелинейное увеличение в три раза	Скачкообразное увеличение от 200 до 300 имп./с, затем нелинейное увеличение до 420 имп./с		
Разрушения	$0,\!84 \div 1,\!00$	Нелинейное увеличение в 1,7 раза	Нелинейное увеличение в 1,5 раза	Нелинейное уменьшение от 420 до 300 имп./с		
	T = 40 °C					
Начальная	$0 \div 0,06$	Отсутствие изменений	Отсутствие изменений	Линейное увеличение от 0 до 40 имп./с		
Линейно- упругая	$0,06 \div 0,38$	Увеличение в конце стадии в два раза	Увеличение в конце стадии в 1,1 раза	Нелинейное увеличение от 40 до 180 имп./с		
Упруго- пластическая	$0,38 \div 0,70$	Нелинейное увеличение в восемь раз	Нелинейное увеличение в 2,5 раза	Скачкообразное увеличение от 180 до 300 имп./с, затем нелинейное увеличение до 395 имп./с		
Разрушения	$0,70 \div 1,00$	Нелинейное увеличение в 2,2 раза	Нелинейное увеличение в четыре раза	Нелинейное уменьшение от 395 до 120 имп./с, затем скачкообразное увеличение до 380 имп./с		
$T = 60 \ ^{\circ}\mathrm{C}$						
Начальная	$0 \div 0.04$	Отсутствие изменений	Отсутствие изменений	Нелинейное увеличение от 0 до 20 имп./с		
Линейно- упругая	$0,04 \div 0,29$	Увеличение в конце стадии в 1,5 раза	Отсутствие изменений	Экспоненциальное увеличение от 20 до 110 имп./с		
Упруго- пластическая	$0,\!29 \div 0,\!62$	Нелинейное увеличение в семь раз	Линейное увеличение в 1,2 раза	Скачкообразное увеличение от 110 до 310 имп./с, падение до 80 имп./с, затем рост до 220 имп./с с выбросами до 260 имп./с		
Разрушения	$0,\!62 \div 1,\!00$	Нелинейное увеличение в 4,8 раза	Нелинейное увеличение в три раза	Нелинейное уменьшение от 220 до 50 имп./с, затем нелинейное увеличение до 180 имп./с		

Таблица 2

на различных стадиях деформирования при $\varepsilon_1 = 0.05$ мм/ мин и различных значениях температуры						
Стадия	$\Delta \sigma(\sigma_{\rm c})$, ΜΠα	$\varepsilon_1(\sigma_1)$	$-arepsilon_v(\sigma_1)$	$\dot{N}_{\Sigma}(\sigma_1),$ имп./с		
		Т	$C = 23 \ ^{\circ}C$			
Начальная	$0 \div 0,\!12$	Отсутствие изменений	Отсутствие изменений	Отсутствие изменений		
Линейно- упругая	$0,\!12 \div 0,\!44$	Незначительное увеличение в конце стадии	Отсутствие изменений	Нестационарное увеличение от 0 до 20 имп./с		
Упруго- пластическая	$0,\!44 \div 0,\!81$	Близкое к линейному увеличение в четыре раза	Незначительное увеличение в конце стадии	Скачкообразное увеличение от 20 до 600 имп./с		
Разрушения	$0,81 \div 1,00$	Экспоненциальное увеличение в 2,6 раза	Нелинейное увеличение в 25 раз	Спад до 120 имп./с, затем увеличение до 400 имп./с и спад до 250 имп./с		
T = 40 °C						
Начальная	$0 \div 0,\!14$	Отсутствие изменений	Отсутствие изменений	Увеличение от 0 до 8 имп./с		
Линейно- упругая	$0,\!14 \div 0,\!44$	Незначительное увеличение начиная с середины стадии	Незначительное увеличение начиная с середины стадии	Нелинейное увеличение от 10 до 60 имп./с		
Упруго- пластическая	$0,\!44 \div 0,\!80$	Экспоненциальное увеличение в 3,5 раза	Экспоненциальное увеличение в 7,5 раза	Нелинейное увеличение от 60 до 440 имп./c, затем спад до 120 имп./c		
Разрушения	$0,\!80 \div 1,\!00$	Нелинейное увеличение в два раза	Нелинейное увеличение в три раза	Нелинейное увеличение от 120 до 450 имп./с, затем спад до 380 имп./с		
		T	C = 60 °C			
Начальная	$0 \div 0,\!15$	Отсутствие изменений	Отсутствие изменений	Увеличение от 0 до 8 имп./с		
Линейно- упругая	$0,\!15 \div 0,\!40$	Незначительное увеличение в конце стадии	Отсутствие изменений	Скачкообразное увеличение от 8 до 115 имп./с, затем выбросы до 290 имп./с и спад до 70 имп./с		
Упруго- пластическая	$0,\!40 \div 0,\!72$	Линейное увеличение в шесть раз	Незначительное увеличение в конце стадии	Скачкообразное увеличение от 70 до 450 имп./с, затем спад до 80 имп./с		
Разрушения	$0,72 \div 1,00$	Экспоненциальное увеличение в три раза	Экспоненциальное увеличение в 25 раз	Нелинейное увеличение от 80 до 450 имп./с, затем спад до 150 имп./с		

Изменение деформации и активности АЭ образцов каменной соли на различных стадиях деформирования при $\dot{\varepsilon}_1 = 0.03$ мм/мин и различных значениях температуры

Таблица З

Значения относительных механических характеристик образцов каменной соли

Механические	$\dot{arepsilon}_1=0,3$ мм/мин			$\dot{arepsilon}_2=0,03$ мм/мин		
характеристики	$T = 23 \ ^{\circ}\mathrm{C}$	$T = 40 \ ^{\circ}\mathrm{C}$	$T = 60 \ ^{\circ}\mathrm{C}$	$T = 23 \ ^{\circ}\mathrm{C}$	$T = 40 \ ^{\circ}\mathrm{C}$	$T = 60 \ ^{\circ}\mathrm{C}$
σ_e/σ_c	0,42 0.84	0,38 0.70	0,29 0.62	0,44	0,43 0.80	0,41 0.72

Полученные экспериментальные данные свидетельствуют о том, что зависимости $\varepsilon_1 = f(\sigma_1)$ и $\varepsilon_v = f(\sigma_1)$ являются достаточно гладкими и не имеют особенностей на границах между стадиями деформирования, что затрудняет выделение последних.

В силу дискретности и неоднородности геоматериала возникающая в нем АЭ также дискретна и нестационарна. В результате появляется шумовая составляющая, что затрудняет определение границ стадий деформирования с использованием функции $\dot{N}_{\Sigma} = f(\sigma_1)$. Однако вследствие существенного изменения параметра \dot{N}_{Σ} на указанных границах возможно их определение с достаточно большой точностью. Такие изменения активности АЭ обусловлены изменением механизма деформирования и масштабного уровня структурных изменений геоматериала.

Исследование активности АЭ показывает, что ее максимальные значения $N_{\Sigma m}$ имеют место на стадии упругопластического деформирования и превышают соответствующие значения даже на стадии разрушения. Такой результат, наблюдаемый для скоростей деформирования $\dot{\varepsilon}_1$ и $\dot{\varepsilon}_2$, объясняется тем, что на стадии разрушения вследствие возникновения крупномасштабных дефектов значительно усиливается затухание сигналов АЭ, поэтому часть этих сигналов не регистрируется. Для скорости деформирования $\dot{\varepsilon}_1$ с увеличением температуры максимальное значение $\dot{N}_{\Sigma m}$ на каждой стадии уменьшается. При этом для обеих скоростей деформирования в пределах одного температурного режима переход от стадии I деформирования к стадии III сопровождается ростом $\dot{N}_{\Sigma m}$, только на стадии IV значение $\dot{N}_{\Sigma m}$ уменьшается.

Изменение скоростей деформирования образцов и воздействующих на них температур приводит к смещению верхних границ стадий II и III. При одних и тех же значениях температуры и изменении скорости деформирования от $\dot{\varepsilon}_1$ до $\dot{\varepsilon}_2$ происходит смещение указанных границ в сторону больших значений напряжений σ , а при одних и тех же значениях $\dot{\varepsilon}_1$ и $\dot{\varepsilon}_2$ увеличение температуры приводит к смещению этих границ в сторону меньших значений напряжений σ .

По положению верхних границ стадий II, III, IV деформирования могут быть оценены пределы упругости σ_e , длительной прочности σ_1^{∞} и прочности при сжатии σ_c каменной соли.

В табл. 3 приведены полученные экспериментально при различных скоростях деформирования и температурах значения σ_e/σ_c и $\sigma_1^{\infty}/\sigma_c$. Из табл. 3 следует, что с увеличением температуры величины σ_e/σ_c и $\sigma_1^{\infty}/\sigma_c$ уменьшаются, причем скорость их уменьшения при $\dot{\varepsilon}_1$ больше, чем при $\dot{\varepsilon}_2$.

Заключение. Представленные в работе экспериментальные данные свидетельствуют о том, что метод акустической эмиссии может быть использован при изучении процессов деформирования и разрушения пластичных геоматериалов в различных термобарических условиях. В частности, этот метод позволяет идентифицировать стадии деформирования каменной соли по аномальным изменениям активности акустической эмиссии на их границах, а также определять соответствующие указанным границам механические свойства.

Кроме того, метод позволяет оценить влияние температуры и скорости деформирования каменной соли на ее свойства и динамику разрушения. Заметим, что вследствие дистанционного характера акустико-эмиссионных измерений существуют возможности реализации метода АЭ непосредственно в массиве.

ЛИТЕРАТУРА

- Mansouri H., Ajalloeian R. Mechanical behavior of salt rock under uniaxial compression and creep tests // Intern. J. Rock Mech. Mining Sci. 2018. V. 110. P. 19–27.
- Jie C., Junwei Z., Song R., et al. Determination of damage constitutive behavior for rock salt under uniaxial compression condition with acoustic emission // Open Civil Engng J. 2015. V. 9, N 1. P. 75–81.
- Li H., Yang C., Zhao W., et al. Experimental studies of failure characteristics and evolution laws of ultrasonic velocity and acoustic emission for salt rock under triaxial loading // Rock Soil Mech. 2016. V. 37. P. 2458–2466.
- Filimonov Y., Lavrov A., Shkuratnik V. Acoustik emission in rock salt: effect of loading rate // Strain. 2002. V. 38. P. 157–159.
- Shkuratnik V. L., Yamshchikov V. L. On the relationship between acoustic emission parameters and strength properties of rocks // Mechanics of joined and faulted rock / Ed. by H. P. Rossmanith. Rotterdam: A. A. Balkema, 1995. P. 469–471.
- 6. Николенко П. В., Набатов В. В. Об обеспечении помехозащищенности геоакустического контроля критических напряжений // Горн. журн. 2015. № 9. С. 33–36.
- 7. Шкуратник В. Л., Новиков Е. А. Влияние механического нагружения каменной соли на параметры термостимулированной акустической эмиссии // ПМТФ. 2015. Т. 56, № 3. С. 164–172.
- Liu H., Zhang M., Liu M., Cao L. Influence of natural gas thermodynamic characteristics on stability of salt cavern gas storage // IOP Conf. Ser. Earth Environment. Sci. 2019. V. 227, N 4. P. 135–142.
- Wisetsaen S., Walsri C., Fuenkajorn K. Effects of loading rate and temperature on tensile strength and deformation of rock salt // Intern. J. Rock Mech. Mining Sci. 2015. V. 73. P. 10–14.
- Gao X., Yang C., Wu W., Liu J. Experimental studies on temperature dependent properties of creep of rock salt // Chinese J. Rock Mech. Engng. 2005. V. 24, N 12. P. 2054–2059.
- Kravchenko O. S., Filimonov Y. L. Deformation of rock salt under increased temperature // Mining Inform. Anal. Bull. 2019. V. 1. P. 69–76.
- Fang K., Li Y., Bi W., Wu J. Experimental study on high temperature shear strength parameter of salt rock // Proc. of the 2nd Intern. symp. of mine safety science and engineering, Beijing (China), Sept. 21–23, 2013. Beijing: Hemisphere Publ., 2013. V. 1. P. 505–508.
- Liang W. G., Xu S. G., Zhao Y. S. Experimental study of temperature effects on physical and mechanical characteristics of salt rock // Rock Mech. Engng. 2006. V. 39, N 5. P. 469–482.
- 14. Назарова Л. А., Назаров Л. А., Голиков Н. А. Оценка реологических свойств пород коллекторов пластов баженовской свиты по данным термобарических испытаний // Физ.техн. пробл. разраб. полез. ископаемых. 2017. № 3. С. 22–28.
- 15. Соснин О. В., Горев Б. В., Любашевская И. В. Высокотемпературная ползучесть и сверхпластичность материалов // ПМТФ. 1997. Т. 38, № 2. С. 140–145.

Поступила в редакцию 8/XI 2019 г., после доработки — 13/XI 2019 г. Принята к публикации 25/XI 2019 г.