УДК 536.7:004.42:622'17 (470.21) DOI: 10.15372/KhUR2021279

Термодинамическое моделирование гипергенных процессов в хвостах обогащения медно-никелевых руд в условиях различных температур и режимов увлажнения

С. И. МАЗУХИНА, В. А. МАСЛОБОЕВ, Д. В. МАКАРОВ

Институт проблем промышленной экологии Севера ФИЦ КНЦ РАН, Апатиты (Россия)

E-mail: simazukhina@mail.ru

(Поступила 23.04.20; после доработки 12.07.20)

Аннотация

Выполнено термодинамическое моделирование гипергенных процессов в хвостах обогащения медноникелевых руд при варьировании температуры (3 и 20 °C), а также процессов испарения воды в верхних слоях хвостов в летние месяцы при низких коэффициентах фильтрации. Установлено, что основными катионами поровых растворов являются ионы магния, кальция, никеля и меди, преобладающими анионами – сульфат- и гидрокарбонат-ионы. Главные новообразованные фазы в системе – минералы группы смектитов, а также гетит, карбонаты, кремнезем, хлорит, гипс.

Ключевые слова: термодинамическое моделирование, хвосты обогащения медно-никелевых руд, гипергенные процессы, поровые растворы, новообразованные минеральные фазы

введение

Изучение влияния изменений климата на стабильное функционирование и развитие предприятий горнопромышленного комплекса в арктических условиях – актуальная научная и практическая задача [1].

В настоящее время процессы добычи и переработки минерального сырья негативно воздействуют на окружающую среду. Характерной особенностью современной горной промышленности является истощение минерально-сырьевой базы, снижение качества руд [2]. Это в полной мере относится и ко многим предприятиям Арктической зоны России. Обогащение бедного и труднообогатимого сырья приводит не только к потерям ценных компонентов, но и к значительному увеличению объемов горнопромышленных отходов.

Наблюдаемое и прогнозируемое изменение климата сказывается на механизмах и интенсив-

ности гипергенных процессов при хранении отходов, их воздействии на окружающую среду. Изменение климата влияет и на технологические свойства потенциально извлекаемых полезных минералов из отходов, используемых в качестве техногенных месторождений. Возможно улучшение условий гидрометаллургической переработки некондиционного сырья [3].

Для изучения гипергенных преобразований минералов, а также оценки и прогноза загрязнения окружающей среды при разработке месторождений полезных ископаемых и хранении отходов добычи и обогащения руд применяют методы компьютерного моделирования [4-9]. В нашей стране для этих целей используется программный комплекс (ПК) "Селектор" [10]. В последние годы с его помощью проведен ряд интересных исследований техногенных систем Сибири и Дальнего Востока.

Так, авторами [11] разработана многорезервуарная модель годового стока рудничных и природных вод Бом-Горхонского вольфрамового месторождения через прилегающее хвостохранилище в экологическую систему р. Зун-Тигня (Забайкальский край).

В [12] показана потенциальная экологическая опасность наиболее распространенных рудных минералов Прасоловского (Au, Ag) месторождения (о-в Кунашир, Сахалинская обл.). Отмечено, что степень токсического воздействия на окружающую среду возрастает на несколько порядков, если окислению и растворению подвергаются не отдельные минералы, а вся их естественная ассоциация. Наибольшую экологическую опасность представляют рудные минералы, извлеченные на поверхность и складированные в виде горнотехнических отвалов или хвостохранилищ.

С использованием компьютерного моделирования процессов физико-химической трансформации отходов обогащения руд скарново-полиметаллических месторождений Дальнегорского района (Приморский край) проведена оценка степени их негативного воздействия на гидросеть [13]. На основе термодинамических расчетов поведения минералов в условиях гипергенеза определен качественный и количественный состав минерализованных поровых растворов, формирующих дренажные воды.

Результаты моделирования физико-химических параметров кристаллизации гипергенных минералов из рудничных, шламовых и дренажных вод в техногенных системах сульфидсодержащих месторождений Дальнегорского района представлены в работе [14]. Установлено, что минералы кристаллизуются в широком интервале значений окислительно-восстановительного потенциала Eh (0.6-1.2 B) и водородного показателя рН (0.3-13.7). Выявлена определяющая роль состава руд и соотношения сульфиды/ вмещающая порода в формировании минеральных парагенезисов и потенциальной экологической опасности хвостов обогащения комплексных оловянно-полиметаллических и серебросвинцово-цинковых руд. Показано, что процессы гипергенеза протекают и при отрицательных температурах (моделирование проводили в интервале от -25 до 45 °C). В условиях отрицательных температур (по сравнению с положительными) формируются более высококонцентрированные микропоровые растворы.

Ранее нами выполнено термодинамическое моделирование гипергенеза отвалов Аллареченского месторождения медно-никелевых руд, расположенных в Печенгском районе Мурманской обл. [15].

Цель данной работы – исследование методом физико-химического моделирования (ПК "Селектор") гипергенных процессов в хвостах обогащения медно-никелевых руд в условиях различных температур и режимов увлажнения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объект исследований

Хвостохранилище обогатительной фабрики (ОФ) № 1 комбината "Печенганикель" АО «Кольская ГМК» в г. Заполярный (Печенгский район, Мурманская обл.), которое эксплуатируется с 1965 г. по настоящее время, занимает площадь более 1000 га и является одним из крупнейших техногенных объектов цветной металлургии России.

Рудные минералы хвостов представлены сульфидами: пирротином, пентландитом и халькопиритом, а также магнетитом (табл. 1).

Сопоставление хвостов текущего производства и лежалых хвостов показало, что при длительном хранении происходят изменения технологических свойств минералов [16, 17]. Наблюдается переход цветных металлов в подвижные формы, меняются соотношения сульфидной и силикатной форм никеля. Эти процессы снижают ценность техногенного сырья. Экологическая опасность хвостов сохраняется на протяжении нескольких десятилетий.

Климатические характеристики региона

Климат Мурманской области относится к субарктическому морскому, имеющему многие черты континентального [18]. Температурный

ТАБЛИЦА 1

Общая характеристика хвостов обогащения медно-никелевых руд

Запасы	Состав	Преобладающие размеры сульфидных сростков
Общие ~320 млн. т	Рудные: пентландит, халькопирит, пирротин, магнетит	3.0-20 мкм
Ni ~550 тыс. т	Нерудные: серпентины (~60 % от общего состава), амфиболы, тальк,	
Си ~270 тыс. т	хлорит, карбонаты (кальцит и доломит), оливин, пироксены	

режим в течение года неустойчив, что вызывает частые оттепели в зимнее время, а летом – резкие похолодания. Среднегодовая температура воздуха уменьшается от 0 °C на побережье Баренцева и Белого морей до -2 °C в центральной части полуострова и до $-3 \dots -4$ °C в горных районах [18]. Потепление проявляется в той или иной степени на всей территории России и в особенности в ее Арктической зоне. Оно выражается как в изменениях среднегодовой, так и среднесезонных температур.

Термодинамическое моделирование

Физико-химическое моделирование гипергенных процессов минералов хвостов выполнено с использованием ПК "Селектор" [19], который снабжен системой встроенных баз термодинамических данных и модулем формирования моделей различной сложности. Используемый алгоритм, основанный на минимизации потенциала Гиббса моделируемой системы методом выпуклого программирования [10], позволяет производить расчеты сложных химических равновесий в изобарно-изотермических, изохорических и адиабатических условиях в мультисистемах, где одновременно могут присутствовать водный раствор электролита, газовая смесь, жидкие и твердые углеводороды, минералы в виде твердых растворов и однокомпонентных фаз. С помощью ПК можно исследовать как многокомпонентные гетерогенные системы, так и мегасистемы, состоящие из взаимодействующих систем (резервуаров), связанных между собой и окружающей средой потоками вещества и энергии. В настоящей работе применена базовая модель "вода – порода – газ", включающая широкий спектр независимых компонентов (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-Fe-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-Ni-Pb-V-Ba- $Co-Cr-Hg-As-Cd-H-O-e^{-}$), где e^{-} – электрон. В модели учтено 996 зависимых компонентов, в том числе: в водном растворе – 369, в газовой фазе - 76, жидких углеводородов - 111, твердых фаз, органических и минеральных веществ – 440. Необходимая термодинамическая информация взята из встроенных в ПК баз данных [10, 19].

В табл. 2 представлен минеральный состав хвостов, использованный в модели для расчета равновесия в системе "вода – порода – газ", где порода – 100 г хвостов, вода – атмосферные осадки, газ – атмосфера. Состав 1 кг атмосферы, моль: Ar 0.3209, C 0.01036, N 53.9478, Ne 0.000616, О 14.48472 [10]. Граничными условиями модели являются состав породы, количество воды, 1 кг атмосферы.

Расчеты выполнены при температурах 3 и 20 °С, общем давлении 10^5 Па. Объем воды в системе – 0.5 л. Рассчитанные модельные значения pH дождевых вод при указанных температурах составили 5.60 и 5.65 соответственно. Процесс испарения исследован при объеме воды 0.05 и 0.001 л.

Отметим, что уже на стадии гидротранспорта и складирования происходит дифференциация вещества хвостов по крупности и плотности, которая затем продолжается при их хранении в результате суффозии и гипергенных процессов. Это приводит к существенной неоднородности вещественного состава хвостов обогащения.

Вследствие неоднородности состава хвостов в модели использован гипотетический усредненный минеральный состав. Процессы, протекающие в хвостах обогащения, существенно сложнее.

Таким образом, модель показывает общие тенденции протекания гипергенных процессов, изменения минерального состава и поровых растворов хвостов в зависимости от внешних условий.

Количество твердой фазы, участвующей во взаимодействии, или степень взаимодействия (v, моль) – количество вступивших в реакцию хвостов, имитирует скорость протекания химических процессов. Степень взаимодействия vварьировали от 10^{-6} до 1 моль. В таблицах и на рисунках зависимости представлены в логарифмической шкале: $v = 10^{\xi}$ или $\xi = \lg v$.

ТАБЛИЦА 2

Минеральный	состав	хвостов	обогащения
медно-никелен	зых руд	Ţ	

Минерал	Формула	Содержание, %
Оливин	$(\mathrm{Fe},\mathrm{Mg})_2[\mathrm{SiO}_4]$	5.0
Авгит	$Ca(Mg,Fe,Al)[(Si,Al)_2O_6]$	5.0
Актинолит	$Ca_{2}(Mg,Fe)_{5}[Si_{8}O_{22}](OH)_{2}$	8.0
Серпентин	$\mathrm{Mg_{3}Si_{2}O_{5}(OH)_{4}}$	60.0
Тальк	$\mathrm{Mg}_{3}\mathrm{Si}_{4}\mathrm{O}_{10}\mathrm{(OH)}_{2}$	3.0
Хлорит	$Mg_{4.5}Al_{3}Si_{2.5}O_{10}(OH)_{8}$	2.0
Доломит	$CaMg(CO_3)_2$	0.6
Кальцит	CaCO ₃	0.4
Магнетит	$\mathrm{Fe_{3}O_{4}}$	130.0
Пирротин	FeS	1.8
Пентландит	$(Ni,Fe)_9S_8$	0.8
Халькопирит	$CuFeS_2$	0.4

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. 3 представлены значения Eh и pH системы, а также концентраций (C, мг/кг H_2O) преобладающих в системе ионов в зависимости от ξ и температуры (3 и 20 °C).

Как видно, величина Eh имеет максимальное значение при $\xi = -6$, далее она монотонно снижается до $\xi = -5$. Затем наблюдается резкое уменьшение Eh до минимума при $\xi = -1.5$, после чего следует незначительное повышение потенциала. Отметим, что вид кривых Eh(ξ) идентичен для температур 3 и 20 °C, при этом окислительновосстановительный потенциал системы при 3 °C на 0.02–0.03 В больше, чем при 20 °C.

Величины pH системы при 20 °C больше (на 0.05-0.11) по сравнению со значениями при 3 °C. Минимальное значение pH наблюдается при $\xi = -6$, затем следует вначале незначительное, потом более существенное смещение кислотнощелочного равновесия в щелочную область. Максимум pH соответствует $\xi = -1.5$.

Отметим, что согласно проведенным ранее натурным и лабораторным исследованиям, pH поровых растворов хвостов обогащения медноникелевых руд составлял 7.9–8.7 [20]. Этим величинам соответствует степень взаимодействия v в диапазоне от $10^{-2.5}$ до 10^0 моль твердой фазы.

Концентрации ионов магния и кальция (основных катионов) закономерно растут с увеличением степени взаимодействия и практически совпадают при 3 и 20 °С.

Более интересны зависимости концентрации от температуры для ионов никеля. Если при 3 °C концентрация Ni растет с увеличением ξ , то при 20 °C, начиная с $\xi = -2$, рост концентрации ионов металла существенно замедляется. Таким образом, при степени взаимодействия $v \ge 10^{-2}$ моль выщелачивание ионов никеля более интенсивно при температуре 3 °C.

Концентрация ионов меди растет с увеличением степени взаимодействия. При этом рост существенно замедляется, начиная с $\xi = -3$ (при 3 °C) и с $\xi = -2.5$ (при 20 °C).

Основным анионом в системе является сульфат-ион. Его концентрация с увеличением степени взаимодействия растет и практически не различается при 3 и 20 °С.

Гидрокарбонат-ион характеризуется существенно более низкими концентрациями по сравнению с сульфат-ионом. Зависимости концентрации от ξ при температурах 3 и 20 °С имеют максимумы при $\xi = -1.5$, при этом, начиная с $\xi = -3$, концентрации HCO₃ в растворе при 3 °С выше. Представляло интерес сопоставить результаты моделирования с данными анализа поровых растворов разновозрастных хвостов обогащения. На рис. 1 в качестве примера приведены концентрации ионов никеля, меди и магния в поровых растворах хвостов действующего (a, b, d) и выведенного из эксплуатации хвостохранилищ (b, c, e). Данные взяты из работы [21].

Видно (см. рис. 1), что для хвостов текущего производства характерны более низкие значения содержаний металлов. Для никеля и меди это связано с начальной стадией выщелачивания сульфидов, а также с торможением процесса их окисления за счет наличия флотореагентов. Существенно более низкие концентрации магния обусловлены превышением скорости окисления сульфидов над скоростью взаимодействия растворов с нерудными минералами.

Сопоставление данных табл. 3 и рис. 1 позволяет заключить, что модель адекватно описывает состав растворов хвостов после их длительного хранения. Вероятно, в этих условиях система "раствор – твердая фаза – атмосфера" ближе к достижению равновесия. Степень взаимодействия v находится в диапазоне от $10^{-2.5}$ до 10^{0} моль твердой фазы.

На рис. 2 показаны зависимости содержания (%) основных новообразованных минеральных фаз от ξ при разных температурах процесса (3 и 20 °C).

Гидроксид алюминия (гиббсит, см. рис. 2, *a*) образуется в диапазоне $-5 < \xi < -3$ в незначительных количествах, затем при $\xi > -1$ (3 °C) и при $\xi > -0.5$ (20 °C).

Существенно более значимый минерал – гетит. Это преобладающий минерал в области –5.5 < ξ < –3.5, что объясняется наиболее быстропротекающими в системе реакциями окисления сульфидов, продуктом которых он является. С увеличением степени взаимодействия содержание гетита существенно снижается, тем не менее, он остается одной из главных фаз (см. рис. 2, б). Зависимости его содержаний от ξ практически идентичны для температур 3 и 20 °C.

При температуре 20 °С кремнезем не образуется (см. рис. 2, в). При 3 °С он появляется в заметных количествах в диапазоне $-3.5 < \xi < -1.5$. Максимальное его содержание (около 38 %) отмечено при $\xi = -2.5$. Это связано с тем, что при 3 °С не образуются гидросиликаты (смектит, хлорит и каолинит).

В изученном нами диапазоне степеней взаимодействий образуются карбонаты — кальцит (см. рис. 2, *г*) и доломит (см. рис. 2, *д*). Содержания

тавлица з

Зависимости Eh, pH и концентраций преобладающих ионов от ξ при температурах 3 и 20 °C в модельной системе "вода – порода – газ"

w.	Eh, B		μd		Концентра	щия преобла,	дающих ион	tob, Mr/Kr H ₂	0							
					Ca^{2+}		Mg^{2+}		Ni^{2+}		Cu ²⁺		SO_4^{2-}		HCO_{3}^{-}	
	3 °C	20 °C	3 °C	20 °C	3 °C	20 °C	3 °C	20 °C	3 °C	20 °C	3 °C	20 °C	3 °C	20 °C	3 °C	20 °C
-6.0	0.91	0.89	5.62	5.67	$4.29\cdot 10^{-4}$	$4.27 \cdot 10^{-4}$	$2.11 \cdot 10^{-3}$	$2.10 \cdot 10^{-3}$	$1.98\cdot 10^{-4}$	$1.98\cdot 10^{-4}$	$2.73\cdot 10^{-5}$	$2.26\cdot 10^{-5}$	$4.39\cdot 10^{-3}$	$4.38 \cdot 10^{-3}$	$1.56\cdot 10^{-1}$	$1.40\cdot10^{-1}$
-5.5	0.91	0.89	5.65	5.70	$1.61\cdot 10^{-3}$	$1.62\cdot 10^{-3}$	$8.38\cdot 10^{-3}$	$8.54\cdot10^{-3}$	$6.32\cdot 10^{-4}$	$6.36\cdot 10^{-4}$	$9.52\cdot 10^{-5}$	$8.43\cdot10^{-5}$	$1.44\cdot 10^{-2}$	$1.45 \cdot 10^{-2}$	$1.68\cdot 10^{-1}$	$1.52\cdot 10^{-1}$
-5.0	06.0	0.88	5.76	5.82	$5.86 \cdot 10^{-3}$	$5.88 \cdot 10^{-3}$	$2.83\cdot 10^{-2}$	$2.85 \cdot 10^{-2}$	$2.47\cdot 10^{-3}$	$2.49\cdot 10^{-3}$	$6.38\cdot10^{-5}$	$5.61\cdot 10^{-5}$	$4.70\cdot 10^{-2}$	$4.70 \cdot 10^{-2}$	$2.14\cdot10^{-1}$	$1.99 \cdot 10^{-1}$
-4.5	0.89	0.86	6.04	6.11	$1.96\cdot 10^{-2}$	$1.96\cdot 10^{-2}$	$9.18\cdot 10^{-2}$	$9.18 \cdot 10^{-2}$	$9.52\cdot 10^{-3}$	$9.49\cdot 10^{-3}$	$1.30\cdot 10^{-4}$	$1.48 \cdot 10^{-4}$	$1.54\cdot10^{-1}$	$1.54\cdot10^{-1}$	$4.10\cdot 10^{-1}$	$3.92\cdot 10^{-1}$
-4.0	0.87	0.84	6.48	6.57	$6.32 \cdot 10^{-2}$	$6.33 \cdot 10^{-2}$	$2.93\cdot 10^{-1}$	$2.93 \cdot 10^{-1}$	$3.20\cdot 10^{-2}$	$3.20\cdot10^{-2}$	$3.72\cdot 10^{-4}$	$4.55\cdot 10^{-4}$	$4.92\cdot 10^{-1}$	$4.92 \cdot 10^{-1}$	$1.12 \cdot 10^0$	$1.12 \cdot 10^0$
-3.5	0.84	0.81	6.97	7.04	$2.01\cdot 10^{-1}$	$2.01\cdot 10^{-1}$	$9.26\cdot 10^{-1}$	$9.26\cdot 10^{-1}$	$1.03\cdot 10^{-1}$	$1.03\cdot 10^{-1}$	$1.28\cdot 10^{-3}$	$1.26\cdot 10^{-3}$	$1.56\cdot 10^0$	$1.55 \cdot 10^0$	$3.50\cdot 10^0$	$3.29\cdot 10^{0}$
-3.0	0.81	0.78	7.47	7.53	$6.33 \cdot 10^{-1}$	$6.38\cdot 10^{-1}$	$2.91\cdot 10^0$	$2.91\cdot 10^0$	$3.28\cdot 10^{-1}$	$3.28\cdot10^{-1}$	$4.35\cdot 10^{-3}$	$2.30\cdot 10^{-3}$	$4.86\cdot10^0$	$4.86 \cdot 10^{0}$	$1.10\cdot 10^1$	$1.03 \cdot 10^1$
-2.5	0.79	0.76	7.97	7.93	$1.97 \cdot 10^0$	$2.02 \cdot 10^0$	$9.04\cdot 10^0$	$7.73 \cdot 10^0$	$1.04\cdot 10^0$	$1.04\cdot 10^0$	$7.43\cdot10^{-3}$	$2.14\cdot10^{-3}$	$1.48 \cdot 10^1$	$1.49 \cdot 10^1$	$3.46\cdot 10^1$	$2.56 \cdot 10^1$
-2.0	0.77	0.74	8.21	8.14	$5.99 \cdot 10^0$	$6.38\cdot 10^0$	$1.80\cdot 10^1$	$1.59 \cdot 10^1$	$3.28\cdot 10^0$	$3.28\cdot 10^0$	$3.16\cdot10^{-3}$	$2.95 \cdot 10^{-3}$	$4.43 \cdot 10^1$	$4.45 \cdot 10^1$	$5.93 \cdot 10^1$	$4.11 \cdot 10^1$
-1.5	0.76	0.74	8.35	8.21	$1.02 \cdot 10^1$	$1.16\cdot 10^1$	$3.73 \cdot 10^1$	$3.53 \cdot 10^1$	$1.04\cdot 10^1$	$4.23 \cdot 10^0$	$1.71\cdot 10^{-3}$	$6.97\cdot 10^{-3}$	$1.27\cdot 10^2$	$1.26\cdot 10^2$	$7.95 \cdot 10^1$	$4.76 \cdot 10^1$
-1.0	0.77	0.75	8.24	8.07	$1.49 \cdot 10^1$	$2.66 \cdot 10^1$	$7.93 \cdot 10^1$	$7.96 \cdot 10^1$	$2.64 \cdot 10^1$	$9.17 \cdot 10^0$	$3.04\cdot10^{-3}$	$4.30\cdot10^{-2}$	$3.46\cdot 10^2$	$3.36\cdot 10^2$	$6.05 \cdot 10^1$	$3.33 \cdot 10^1$
-0.5	0.78	0.76	8.09	7.92	$3.19 \cdot 10^1$	$7.57 \cdot 10^1$	$1.63\cdot 10^2$	$1.65 \cdot 10^2$	$5.13 \cdot 10^1$	$1.80\cdot 10^1$	$6.05\cdot 10^{-3}$	$2.24\cdot 10^{-1}$	$7.77 \cdot 10^2$	$7.36\cdot 10^2$	$3.78 \cdot 10^1$	$2.06 \cdot 10^1$
0	0.78	0.76	8.04	7.93	$6.86 \cdot 10^1$	$2.23 \cdot 10^2$	$3.44 \cdot 10^2$	$3.41 \cdot 10^2$	$8.08 \cdot 10^1$	$2.79 \cdot 10^1$	$1.01\cdot 10^{-2}$	$7.04\cdot10^{-1}$	$1.64\cdot 10^3$	$1.54\cdot 10^3$	$2.09 \cdot 10^1$	$1.02 \cdot 10^1$
1Ц	nown	иние. Зд	есь и в	табл. 4:	Еһ – окисл	ительно-вос	становитель	ный потенц	иал; рН – в	одородный 1	локазатель;	ξ = lg v, где	и – степен	ь взаимодей	ствия, моль.	

Рис. 1. Концентрации ионов никеля, меди и магния в хвостах действующего (*a*, *b*, *d*, число проб 27) и выведенного из эксплуатации хвостохранилищ (*б*, *c*, *e*, число проб 104). М(*x*) – среднее значение; Min(*x*) – минимальное значение; Max(*x*) – максимальное значение; Med(*x*) – медиана.

минералов слабо зависят от температуры и максимальны при $\xi = 0$ (7 и 10 % соответственно).

Рассмотрим далее поведение слоистых гидросиликатов.

Содержание каолинита в системе существенно зависит от температуры (см. рис. 2, *e*). Минерал устойчив при $\xi > -4$ и температуре 3 °С, максимальное его содержание составляет около 3 %. При 20 °С каолинит образуется в диапазоне $-3.5 < \xi < -2$, а затем появляется при $\xi > -0.5$. В данных условиях его максимальное содержание также около 3 %.

В представленном нами диапазоне степеней взаимодействий новообразованный хлорит наблюдается только при температуре 20 °C, при этом его содержание составляет около 3 % (см. рис. 2, \mathcal{K}).

Основные слоистые гидросиликаты в системе – минералы из группы смектитов (см. рис. 2, 3). Фазы появляются при $\xi > -3$ (20 °C) и

 $\xi > -2.5$ (3 °C). Их максимальное содержание превышает 50 %. Несколько бо́льшим содержанием смектитов характеризуется система при температуре 20 °C. Следует указать, что подобные фазы повсеместно зафиксированы нами при изучении тонкодисперсных фракций лежалых хвостов обогащения медно-никелевых руд [22].

Наконец, отметим также появление либенбергита (см. рис. 2, *u*). Минерал образуется при $\xi > -2.5$ (20 °C) и $\xi > -2$ (3 °C). Бо́льшие содержания характерны для 20 °C.

Рассмотрим результаты моделирования процесса испарения. Значения Eh и pH системы при различных ξ и объма воды в системе представлены в табл. 4.

Зависимости окислительно-восстановительного потенциала раствора имеют ярко выраженный минимум. При объме воды 0.05 л максимальное значение Eh составляет 0.88 В и соответствует $\xi = -6$. Уменьшение Eh продол-

Рис. 2. Содержания фаз в зависимости от ξ (ξ = lg v, где v – степень взаимодействия, моль) при температурах 3 и 20 °C. Минеральные фазы: гиббсит (a); гетит (б); кремнезем (в); кальцит (г); доломит (∂); каолинит (е); хлорит (ж); смектит (з); либенбергит (u).

жается до 0.74 В ($\xi = -2.5$), затем величина этого показателя растет и выходит на плато (0.77 В) при $\xi = -1$. С уменьшением объма воды в системе до 0.001 л максимальное значение Eh (при $\xi = -6$) снижается (0.81 В). Минимальное значение Eh (0.73 В) наблюдается при более высокой степени взаимодействия ($\xi = -4.5$), далее следует рост Eh до 0.80 В.

При уменьшении объма воды в системе наблюдается смещение максимальных значений рН. Так, при объме воды 0.05 л степень взаимодействия v минеральных фаз, отвечающая зафиксированным в натурных экспериментах значениям водородного показателя поровых растворов, находится в диапазоне от $10^{-3.5}$ до 10^{-2} моль, а при 0.001 л – от 10^{-5} до $10^{-3.5}$ моль твердой фазы.

Зависимости концентраций преобладающих в системе ионов от ξ и объма воды также приведены в табл. 4.

w.	Eh, B		Hq		Концентра	щия преобла;	цающих ион	ов, мг/кг Н	0.2							
					Ca^{2+}		Mg^{2+}		Ni^{2+}		Cu ²⁺		SO_4^{2-}		HCO_{3}^{-}	
	0.05 л	0.001 л	0.05 л	0.001 л	0.05 л	0.001 л	0.05 л	0.001 л	0.05 л	0.001 л	0.05 л	0.001 л	0.05 л	0.001 л	0.05 л	0.001 л
-6.0	0.88	0.81	5.79	7.06	$4.23 \cdot 10^{-3}$	$2.12 \cdot 10^{-1}$	$2.10 \cdot 10^{-2}$	$1.05 \cdot 10^0$	$1.61\cdot 10^{-3}$	$9.56\cdot 10^{-2}$	$1.74 \cdot 10^{-4}$	$8.30\cdot10^{-3}$	$4.32 \cdot 10^{-2}$	$2.16\cdot 10^0$	$1.89 \cdot 10^{-1}$	$3.63\cdot 10^0$
-5.5	0.86	0.77	6.07	7.67	$1.59\cdot 10^{-2}$	$7.83 \cdot 10^{-1}$	$8.50\cdot10^{-2}$	$4.18 \cdot 10^0$	$2.77 \cdot 10^{-3}$	$3.06 \cdot 10^{-1}$	$5.90\cdot10^{-4}$	$1.07\cdot 10^{-2}$	$1.42 \cdot 10^{-1}$	$6.96 \cdot 10^0$	$3.55 \cdot 10^{-1}$	$1.50\cdot 10^1$
-5.0	0.83	0.75	6.54	7.99	$5.84 \cdot 10^{-2}$	$2.86 \cdot 10^0$	$2.84\cdot10^{-1}$	$9.68 \cdot 10^{0}$	$2.17 \cdot 10^{-2}$	$1.23\cdot 10^0$	$4.36\cdot10^{-4}$	$2.52\cdot 10^{-3}$	$4.68\cdot10^{-1}$	$2.24 \cdot 10^1$	$1.06\cdot 10^0$	$3.10\cdot 10^1$
-4.5	0.80	0.73	7.03	8.27	$1.96\cdot10^{-1}$	$9.21 \cdot 10^0$	$9.17 \cdot 10^{-1}$	$2.28 \cdot 10^1$	$4.42\cdot 10^{-3}$	$3.53 \cdot 10^0$	$1.34\cdot10^{-3}$	$2.91\cdot 10^{-3}$	$1.54\cdot 10^0$	$6.99 \cdot 10^1$	$3.25 \cdot 10^0$	$6.04 \cdot 10^{1}$
-4.0	0.78	0.74	7.53	8.18	$6.28\cdot 10^{-1}$	$1.62 \cdot 10^1$	$2.90\cdot 10^{0}$	$5.00 \cdot 10^1$	$1.05\cdot 10^{-4}$	$6.52 \cdot 10^0$	$2.16\cdot 10^{-3}$	$1.33 \cdot 10^{-2}$	$4.84\cdot10^{0}$	$2.08 \cdot 10^2$	$1.03 \cdot 10^1$	$5.02 \cdot 10^{1}$
-3.5	0.76	0.75	7.93	8.02	$1.97\cdot 10^0$	$3.73 \cdot 10^1$	$7.82 \cdot 10^{0}$	$1.24 \cdot 10^2$	$5.96\cdot 10^{-6}$	$1.58\cdot 10^1$	$1.97\cdot 10^{-3}$	$8.27 \cdot 10^{-2}$	$1.49 \cdot 10^1$	$5.77 \cdot 10^2$	$2.60 \cdot 10^1$	$3.56 \cdot 10^1$
-3.0	0.75	0.76	8.13	7.85	$6.02 \cdot 10^{0}$	$9.37 \cdot 10^1$	$1.61 \cdot 10^1$	$3.08 \cdot 10^2$	$1.20\cdot 10^{-5}$	$3.95 \cdot 10^1$	$3.19\cdot 10^{-3}$	$1.27\cdot 10^{-2}$	$4.50 \cdot 10^1$	$1.49 \cdot 10^3$	$4.15 \cdot 10^1$	$2.52 \cdot 10^1$
-2.5	0.74	0.77	8.20	7.72	$1.15 \cdot 10^1$	$1.25 \cdot 10^2$	$3.53 \cdot 10^1$	$6.38 \cdot 10^2$	$2.63\cdot 10^{-5}$	$7.49 \cdot 10^1$	$7.51 \cdot 10^{-3}$	$2.29\cdot 10^{-2}$	$1.28 \cdot 10^2$	$2.93 \cdot 10^3$	$4.92 \cdot 10^1$	$1.82 \cdot 10^1$
-2.0	0.75	0.78	8.04	7.62	$2.21 \cdot 10^1$	$6.97 \cdot 10^1$	$7.81 \cdot 10^1$	$1.24 \cdot 10^3$	$5.78\cdot10^{-5}$	$1.27 \cdot 10^2$	$4.66\cdot 10^{-2}$	$3.59\cdot 10^{-2}$	$3.36 \cdot 10^2$	$5.26\cdot 10^3$	$3.40\cdot 10^1$	$1.45 \cdot 10^1$
-1.5	0.76	0.78	7.88	7.50	$4.76 \cdot 10^1$	$3.82 \cdot 10^1$	$1.70 \cdot 10^2$	$2.34\cdot 10^3$	$1.27\cdot 10^{-4}$	$2.29 \cdot 10^2$	$2.82\cdot 10^{-1}$	$6.33 \cdot 10^{-2}$	$7.71 \cdot 10^2$	$9.72 \cdot 10^3$	$2.31 \cdot 10^1$	$1.08 \cdot 10^1$
-1.0	0.77	0.79	7.74	7.40	$8.76 \cdot 10^1$	$2.32 \cdot 10^1$	$3.60\cdot 10^2$	$4.68 \cdot 10^3$	$2.19\cdot 10^{-4}$	$4.40 \cdot 10^2$	$1.45 \cdot 10^0$	$1.23 \cdot 10^{-1}$	$1.63\cdot 10^3$	$1.93\cdot 10^4$	$1.61 \cdot 10^1$	$7.75 \cdot 10^{0}$
-0.5	0.77	0.80	7.69	7.32	$5.10\cdot 10^1$	$1.20\cdot 10^1$	$6.56 \cdot 10^2$	$7.51\cdot 10^3$	$4.88\cdot 10^{-4}$	$6.54\cdot 10^2$	$5.27\cdot 10^0$	$1.95\cdot 10^{-1}$	$2.72 \cdot 10^3$	$3.08\cdot 10^4$	$1.23 \cdot 10^1$	$4.70\cdot 10^0$
0	0.77	0.79	7.74	7.45	$3.09\cdot 10^1$	$1.47\cdot 10^1$	$1.28\cdot 10^3$	$1.87\cdot 10^4$	$9.52\cdot 10^{-4}$	$1.00\cdot 10^3$	$1.52\cdot 10^1$	$3.80\cdot10^{-1}$	$5.15 \cdot 10^3$	$7.57 \cdot 10^4$	$6.71 \cdot 10^0$	$2.11 \cdot 10^0$

Зависимости Eh, pH и концентраций преобладающих ионов от ξ при объеме воды 0.05 и 0.001 л в системе "вода – порода – газ"

таБЛИЦА 4

Примечание. Обозн. см. табл. 3.

Как видно, с уменьшением объма воды в системе и с увеличением степени взаимодействия растворы становятся более концентрированными по основным катионам. Концентрации ионов магния и никеля растут монотонно. В целом концентрации ионов никеля существенно превосходят концентрации ионов меди, что совпадает с натурными исследованиями поровых растворов хвостов обогащения медно-никелевых руд. Концентрация в растворе сульфат-иона с увеличением степени взаимодействия минеральных фаз растет. При уменьшении объма воды в системе с 0.05 до 0.001 л концентрация $SO_4^{2^-}$ увеличивается более чем на порядок.

Зависимости концентраций гидрокарбонатионов от ξ характеризуются наличием максимумов, которые смещаются при объме воды 0.05 л к $\xi = -2.5$, а при 0.001 л – к $\xi = -4.5$.

Рис. 3. Содержания фаз в зависимости от от ξ (ξ = lg v, где v – степень взаимодействия, моль) и объма воды в системе 0.05 и 0.001 л. Минеральные фазы: гетит (a); гипс (б); кальцит (в); доломит (г); смектит (д); хлорит (е); либенбергит (ж).

На рис. 3 представлены содержания основных новообразованных минеральных фаз в зависимости от объма воды. Преобладают те же новообразованные минеральные фазы (см. рис. 2). Особенности системы – отсутствие кремнезема, крайне низкое содержание каолинита (на рисунке не показан), а также появление гипса (см. рис. 3, б). Характерно, что его заметные содержания находятся вне области -3.5 < ξ < −2 при 0.05 л воды в системе, а при 0.001 л − вне области −5 < ξ < −3.5. Вместе с тем, наличие гипса фиксировалось нами ранее при изучении мелкодисперсных глиноподобных фракций хвостов с низким коэффициентом фильтрации [20, 22]. В более крупных фракциях гипс не был определен. Очевидно, вследствие более высоких значений коэффициента фильтрации он растворялся и вымывался. Отметим, что для многих старогодних хвостохранилищ характерно образование цементирующих слоев с практически нулевым коэффициентом фильтрации [23-25]. Схожее явление отмечено на выведенном из эксплуатации хвостохранилище медно-никелевых руд в пос. Африканда (Мурманская обл.) [22]. В нашей модели снижение коэффициента фильтрации может быть учтено путем увеличения степени взаимодействия.

В целом преобладающими фазами вне зависимости от объма воды в системе являются минералы группы смектитов, гетит, карбонаты и хлорит (см. рис. 3).

выводы

Проведенное термодинамическое моделирование гипергенных процессов в хвостах обогащения медно-никелевых руд позволяет сделать следующие выводы:

1) Основными катионами поровых растворов являются ионы магния, кальция, никеля и меди, преобладающими анионами – сульфат- и гидрокарбонат-ионы. Концентрации ионов при температурах 3 и 20 °С практически одинаковы, за исключением ионов никеля, который с возрастанием степени взаимодействия в системе интенсивнее выщелачивается при более низкой температуре. С уменьшением объма воды в системе и с увеличением степени взаимодействия растворы становятся более концентрированными по основным катионам и анионам.

 Главные новообразованные фазы в системе: минералы группы смектитов и гетит, карбонаты, кремнезем, хлорит, гипс. При малых степенях взаимодействия в системе, что соответствует фильтрации воды через крупные фракции хвостов и относительно малому времени взаимодействия, преобладающей фазой является гетит. С увеличением степени взаимодействия – фильтрация через мелкодисперсные фракции хвостов – преобладают слоистые гидросиликаты магния из группы смектитов.

3) Результаты моделирования показывают, что повышение среднесезонных температур, длительности безморозного периода приведет к интенсификации гипергенных процессов при хранении хвостов и увеличению негативного воздействия на компоненты окружающей среды прилегающих территорий. Весной и осенью при температурах незначительно выше 0 °С наблюдается переход цветных металлов в растворимые формы практически так же, как в летний период. Летом при испарении и низкой скорости фильтрации воды в верхних слоях хвостов происходит изменение состава и соотношения новообразованных минеральных фаз.

Работа выполнена в рамках темы НИР (№ 0226-2019-0047) и частично поддержана из средств гранта РФФИ (№ 18-05-60142 Арктика).

СПИСОК ЛИТЕРАТУРА

- Van Dam K., Scheepstra A., Gille J., Stepien A., Koivurova T. Mining in the European Arctic. The Changing Arctic and the European Union: A book based on the Report "Strategic Assessment of Developement of the Arctic: Assessment Conducted for the European Union" / A. Stepien, T. Koivurova, P. Kankaanpää (Eds.). Vol. 89. Leiden – Boston: Brill/Nijhoff, 2016. P. 163–185.
- 2 O'Connor C. T. Global challenges facing the mineral processing industry // Материалы Международного совещания "Проблемы и перспективы эффективной переработки минерального сырья в 21 веке" (Плаксинские чтения – 2019). Иркутск: Изд-во ООО "Репроцентр А1", 2019. С. 3–7.
- 3 Masloboev V. A., Seleznev S. G., Svetlov A. V., Makarov D. V. Hydrometallurgical processing of low-grade sulfide ore and mine waste in the Arctic regions: Perspectives and challenges // Minerals. 2018. Vol. 8. Article 436.
- 4 Heikkinen P. M., Räisänen M. L., Johnson R. H. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage // Mine Water and the Environment. 2009. Vol. 28. P. 30–49.
- 5 Flores A. N., Rubio L. M. D. Arsenic and metal mobility from Au mine tailings in Rodalquilar (Almería, SE Spain) // Environmental Earth Sciences. 2010. Vol. 60. P. 121–138.
- 6 Plante B., Benzaazoua M., Bussière B. Predicting geochemical behaviour of waste rock with low acid generating potential using laboratory kinetic tests // Mine Water and the Environment. 2011. Vol. 30. P. 2–21.
- 7 Meima J. A., Graupner T., Rammlmair D. Modeling the effect of stratification on cemented layer formation in sulfidebearing mine tailings // Applied Geochemistry. 2012. Vol. 27. P. 124–137.

- 8 Moncur M. C., Ptacek C. J., Hayashi M., Blowes D. W., Birks S. J. Seasonal cycling and mass-loading of dissolved metals and sulfate discharging from an abandoned mine site in Northern Canada // Applied Geochemistry. 2014. Vol. 41. P. 176-188.
- 9 Maest A. S., Nordstrom D. K. A geochemical examination of humidity cell tests // Applied Geochemistry. 2017. Vol. 81. P. 109-131.
- 10 Чудненко К. В. Термодинамическое моделирование в геохимии: теория, алгоритмы, программное обеспечение приложения. Новосибирск: Академ. изд-во "Гео", 2010. 287 с.
- 11 Васильева Е. В., Васильев В. И., Смирнова О. К. Физикохимическая модель стока техногенных вод Бом-Горхонского вольфрамового месторождения в экологическую систему реки Зун-Тигня (Забайкальский край) // Минералогия техногенеза. 2015. № 16. С. 155–159.
- 12 Кемкина Р. А., Кемкин И. В. Вещественный состав руд и минералого-геохимическая методика оценки потенциального загрязнения окружающей среды токсичными элементами (на примере Прасоловского Au-Ag месторождения). Владивосток: Дальнаука, 2007. 212 с.
- 13 Кемкин И. В., Кемкина Р. А. Оценка степени негативного воздействия отходов обогащения руд на гидросеть на основе компьютерного моделирования // Горный информ.аналит. бюлл. 2019. № 11. С. 94–105.
- 14 Зверева В. П., Костина А. М., Лысенко А. И. Происхождение гипергенных и техногенных минералов в горнопромышленных техногенных системах (на примере Дальнегорского района, Приморье) // Записки РМО. 2019. Ч. CXLVIII, № 2. С. 50-60.
- 15 Мазухина С. И., Сандимиров С. С., Макаров Д. В. Термодинамическое моделирование гипергенеза отвалов Аллареченского месторождения в условиях различных температур и режимов увлажнения // Химия уст. разв. 2019. Т. 27, № 5. С. 489-498.
- 16 Калинников В. Т., Макаров В. Н., Мазухина С. И., Макаров Д. В., Маслобоев В. А. Исследование гипергенных процессов в хвостах обогащения сульфидных медно-

никелевых руд // Химия уст. разв. 2005. Т. 13, № 4. С. 515-519.

- 17 Чантурия В. А., Макаров Д. В., Трофименко Т. А., Макаров В. Н., Васильева Т. Н. Изменение технологических свойств техногенного сульфидсодержащего сырья в процессе хранения // Физ.-техн. проблемы разработки полез. ископаемых. 2000. № 3. С. 108–114.
- 18 Яковлев Б. А. Климат Мурманской области. Мурманск: Мурманское кн. изд-во, 1961. 86 с.
- 19 Мазухина С. И. Формирование поверхностных и подземных вод Хибинского горного массива. Апатиты: КНЦ РАН, 2012. 173 с.
- 20 Макаров Д. В., Макаров В. Н., Дрогобужская С. В., Алкацева А. А., Фарвазова Е. Р., Тунина М. В. Содержания Ni, Cu, Co, Fe, MgO в поровых растворах хвостов обогащения медно-никелевых руд после их длительного хранения // Геоэкология. 2006. № 2. С. 136–142.
- 21 Макаров В. Н., Нестерова А. А., Макаров Д. В., Васильева Т. Н. Концентрации металлов в поровых растворах хвостов обогащения медно-никелевых руд в зависимости от длительности хранения отходов // Экологическая химия. 2006. Т. 15, № 4. С. 235–242.
- 22 Чантурия В. А., Макаров В. Н., Макаров Д. В., Васильева Т. Н. Формы нахождения никеля в лежалых хвостах обогащения медно-никелевых руд // Доклады РАН. 2004. Т. 399, № 1. С.104–106.
- 23 Белогуб Е. В., Щербакова Е. П., Никандрова Н. К. Сульфаты Урала: распространенность, кристаллохимия, генезис. М.: Наука, 2007. 160 с.
- 24 DeSisto S. L., Jamieson H. E., Parsons M. B. Influence of hardpan layers on arsenic mobility in historical gold mine tailings // Applied Geochemistry. 2011. Vol. 26. P. 2004-2018.
- 25 Lindsay M. B. J., Moncur M. C., Bain J. G., Jambor J. L., Ptacek C. J., Blowes D. W. Geochemical and mineralogical aspects of sulfide mine tailings // Applied Geochemistry. 2015. Vol. 57. P. 157–177.