УДК 778.38; 773.93; 535.421; 542.85

ДИНАМИКА ДИФРАКЦИОННОЙ ЭФФЕКТИВНОСТИ НАЛОЖЕННЫХ ОБЪЁМНЫХ ОТРАЖАТЕЛЬНЫХ ГОЛОГРАММ ПРИ ИХ ОДНОВРЕМЕННОЙ ЗАПИСИ В ФОТОПОЛИМЕРНОМ МАТЕРИАЛЕ

© Е. Ф. Пен^{1, 2}

¹ Институт автоматики и электрометрии СО РАН, 630090, г. Новосибирск, просп. Академика Коптюга, 1 ² Новосибирский государственный технический университет, 630073, г. Новосибирск, просп. К. Маркса, 20 E-mail: pen@iae.nsk.su

Получены новые экспериментальные данные о динамике дифракционной эффективности (ДЭ) наложенных объёмных отражательных голограмм с периодом решёток $\sim\!250$ нм при их одновременной записи в фотополимерном материале BAYFOL HX ТР. Установлены характер и параметры их взаимного влияния при задержке засветки одной голограммы относительно другой. Выявлено, что на динамике ДЭ практически не сказываются вариации времени диффузии мономера в интервале $0.12 < t_D < 0.17$ с, но существенно проявляется нестационарное поведение параметра фотополимеризации τ_p , который в наших экспериментах возрастал от 5 до 15 с. Известные уравнения фотоиндуцированного изменения показателя преломления фотополимера доработаны с учётом характера изменения параметра τ_p . Расчётные зависимости динамики ДЭ, полученные с помощью уточнённых формул, хорошо согласуются с экспериментальными данными (СКО $\sim\!2~\%$).

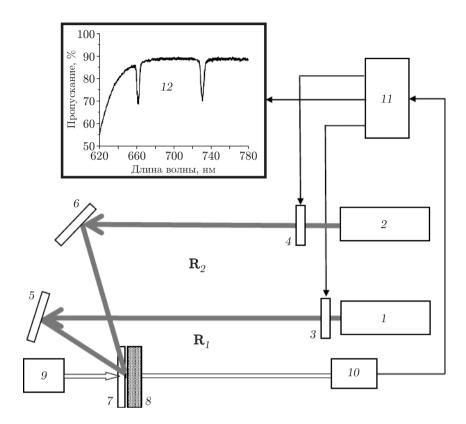
 ${\it Knioveebbe\ c.noba:}$ голографическая запись, дифракционная эффективность, фотополимер.

DOI: 10.15372/AUT20200404

Введение. Голографические фотополимерные материалы (ГФПМ), уже нашедшие практическое применение в оптической памяти, защитной и художественной голографии, приборостроении, сенсорах, устройствах дополненной реальности [1–4], остаются объектом исследований физико-химических процессов и оптимальных режимов голографической записи [4]. Общепризнанный диффузионный механизм записи и модель нелокальной фотополимеризации [5–7] хорошо согласуются с экспериментальными фактами при формировании в ГФПМ простейших пропускающих и отражательных голографических решёток.

В известных публикациях [4, 8] часто ограничиваются изучением характеристик таких решёток для момента завершившейся записи и насыщения величины дифракционной эффективности (ДЭ). Исследования динамики голографической записи в фотополимерном материале также проводились в [9–11]. Установлено, что фундаментальными параметрами процесса фотополимеризации являются коэффициент диффузии мономера и время конверсии мономера в полимер. Они определяют скорость реакций и значение фотоиндуцированного изменения показателя преломления как во время засветки, так и после её завершения. Однако эти исследования выполнены в основном для пропускающих одиночных голограмм с относительно большим периодом решётки, а также для наложенных голограмм при их последовательной записи. В [11] детально изучены физико-химические процессы голографической записи в фотополимерном материале в режиме импульсной засветки длительностью менее 1 мс, являющиеся важной, но специфической областью исследований ГФПМ, которая нами не затрагивается.

Вместе с тем до сих не изучены другие важные на практике ситуации, например одновременная запись наложенных объёмных отражательных голограмм, имеющих период решётки значительно меньший, чем у пропускающих. Скудное количество экспериментальных данных в этой области связано, вероятно, с тем, что регистрация динамики ДЭ для отражательных голограмм требует сложных установок.

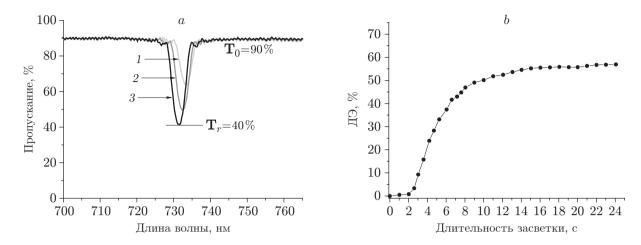

Цель предлагаемой работы — получение новых экспериментальных данных о динамике одновременной записи наложенных отражательных голограмм в ГФПМ с учётом основных параметров процесса фотополимеризации; выяснение поведения ДЭ в случае решёток с близкими и заметно отличающимися периодами; оценка эффективности каждой из наложенных голограмм при различии в интенсивностях записывающих пучков; определение взаимного влияния двух наложенных решёток с задержкой записи одной из них относительно другой. Эти результаты помогут углубить знания процессов голографической записи в ГФПМ, а также позволят полнее реализовать их возможности на практике, в частности при мультиплексировании (наложении) голограмм.

Экспериментальные исследования. Представим новые экспериментальные данные о динамике ДЭ наложенных объёмных отражательных голографических решёток при их одновременной записи в ГФПМ с варьированием энергии записи, периодов решёток и других параметров. В экспериментах использовался «сухой» голографический фотополимер BAYFOL HX TP из линейки продуктов компании Bayer MaterialScience AG (Германия) с толщиной регистрирующего слоя L=55 мкм. Базовый состав этого материала и принцип его работы описаны в [4, 8, 12].

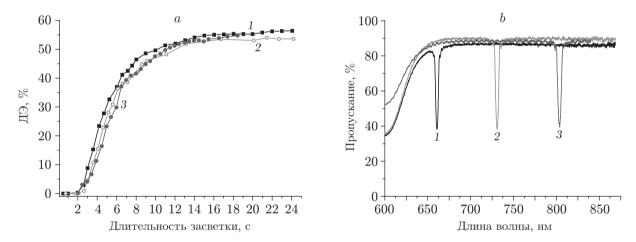
Экспериментальная установка. Для реализации интересующих нас исследований разработана экспериментальная установка, функциональная схема которой показана на рис. 1, где лазерный пучок освещает объект записи, проходя сквозь регистрирующую среду, а голограмма формируется в результате интерференции падающей и отражённой от объекта волн. В качестве объекта записи в нашей установке использовано полупрозрачное зеркало, что является модификацией известной схемы [13]. Такое зеркало обеспечивает, с одной стороны, формирование отражённой (объектной) волны, а с другой — предоставляет возможность зондирования отражательной голограммы непосредственно во время её записи путём измерения спектра пропускания [14, 15]. Отметим, что на эти измерения не оказывает влияния усадка ГФПМ при конверсии мономера в фотополимер [16], как это имеет место в случае пропускающих голограмм, подверженных из-за усадки нарушению брэгговских условий и тем самым искажению значений ДЭ [4].

Установка позволяет проводить регистрацию как одиночных объёмных отражательных голографических решёток с отличающимися периодами, так и одновременную запись двух решёток, наложенных на одном и том же участке ГФПМ, с регулируемыми энергиями и задержками засветки одной голограммы относительно другой. Угол падения (относительно нормали к поверхности образца) пучка \mathbf{R}_1 составлял $\theta_1=14^\circ$ (в воздухе), а пучка $\mathbf{R}_2-\theta_2=21^\circ$ в одном эксперименте и $\theta_2=45^\circ$ либо 60° в других для получения решёток с заметной разницей периодов. Мощности записывающих пучков \mathbf{R}_1 и \mathbf{R}_2 подбирались таким образом, чтобы с учётом указанных углов падения на ГФПМ их интенсивности в плоскости записи были равными и составляли $20\pm1~\mathrm{мBT/cm^2}$. Энергия записи дозировалась путём задания времени засветки с помощью автоматизированных фотозатворов. Дифракционная эффективность голограмм контролировалась непрерывно с момента начала засветки благодаря возможности измерения спектра пропускания голограммы непосредственно в процессе её записи [14, 15].

Экспериментальные данные. Вначале были проведены эксперименты по записи одиночных отражательных решёток с их различными периодами и интенсивностями засветки. Цель этих экспериментов — выяснение зависимости динамики записи от указанных па-



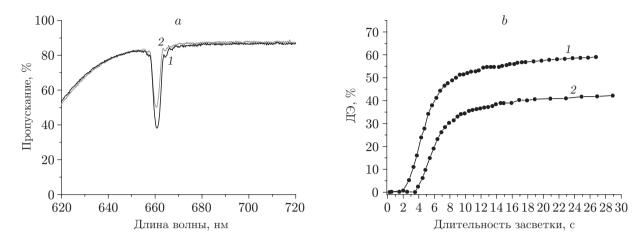
Puc.~1.~ Функциональная схема экспериментальной установки: 1,~2 — лазерные диоды с $\lambda=655$ нм; 3,~4 — фотозатворы; 5,~6 — зеркала; 7 — образец $\Gamma\Phi$ -ПМ; 8 — полупрозрачное зеркало; 9 — источник белого света; 10 — цифровой спектрофотометр; 11 — управляющий компьютер; 12 — монитор


раметров и использование полученных данных для последующей одновременной записи наложенных голограмм.

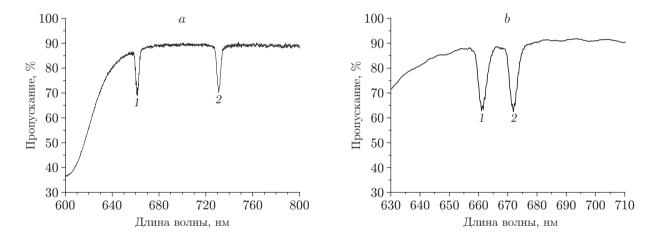
На рис. 2, a представлены спектры пропускания одиночной отражательной решётки с периодом 245 нм и интенсивностью засветки $\mathbf{R}_2 = 20~\mathrm{mBt/cm^2}$ в различные моменты её записи: кривые 1--3 соответствуют длительностям засветки 4,5; 6,5 и 15,5 с. Узкий спектральный провал обусловлен отражением зондирующего света образовавшейся объёмной решёткой, увеличение глубины провала означает возрастание отражения. Наблюдаемый сдвиг спектров в коротковолновую область вызван уменьшением периода отражательной решётки из-за упомянутой усадки толщины $\Gamma\Phi\Pi M$ [16]. Воспроизводимость экспериментальных данных составила $\pm 5~\%$ и проверялась путём трёхкратного повторения записи решётки.

По изменению степени пропускания объёмной отражательной решётки можно оценить её дифракционную эффективность по формулам, учитывающим значения пропускания \mathbf{T}_r в центре провала и \mathbf{T}_0 вне его [14, 17]. Погрешность такой оценки не более ± 1 %. Интересующая нас зависимость ДЭ от длительности засветки t (при фиксированной интенсивности пучка \mathbf{R}_2) показана на рис. 2, b. Прослеживается несколько этапов формирования решётки: вначале имеет место так называемый индукционный период, обусловленный влиянием ингибиторов процесса фотополимеризации [10, 18], когда с начала засветки до некоторого значения $t_{\rm inh} \sim 2$ с решётка только зарождается и ДЭ ничтожна; затем в течение 10 с наблюдается быстрый рост ДЭ до величины порядка 50 %; далее этот рост замедляется, и спустя 15 с наступает насыщение ДЭ до уровня ~ 55 %. В рассматриваемом случае энергия, соответствующая максимуму ДЭ, составляет ~ 250 мДж/см². Согласно теории формиро-

 $Puc.\ 2.\ \Gamma$ рафики экспериментальных данных одиночной объёмной отражательной решётки: динамика спектра пропускания (a); динамика дифракционной эффективности (b)


 $Puc.\ 3.$ Характеристики трёх одиночных отражательных решёток с различными периодами: динамика дифракционной эффективности (a); спектры пропускания в конце процессов записи (b)

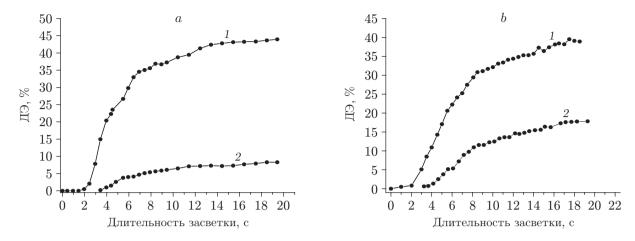
вания голографических решёток в фотополимере [4] насыщение значения ДЭ объясняется ограниченной величиной фотоиндуцированного изменения показателя преломления, которая для кривой на рис. 2, b, рассчитана по формулам [19] при ранее указанных значениях толщины ГФПМ и длины волны засветки, составляет $\Delta n_{\rm max} \sim 0{,}025$ и согласуется с данными [4].


На рис. 3, a представлены зависимости ДЭ от длительности засветки для одиночных решёток с периодами 220, 245 и 266 нм (кривые 1, 2, 3), а на рис. 3, b — спектры пропускания этих решёток в моменты насыщения ДЭ.

Поскольку кривые очень похожи, то можно полагать, что динамика формирования этих решёток одинакова. Таким образом, не только для пропускающих, но и для отражательных решёток подтверждаются доводы нелокальной теории фотополимеризации [6] о том, что процессы диффузии мономера и фотополимеризации протекают независимо от пространственного расположения решёток.

Важным является влияние интенсивности засветки на динамику и значение ДЭ на стадии насыщения. На рис. 4 показаны спектры пропускания двух решёток и зависимости

 $Puc.\ 4.$ Характеристики двух одиночных отражательных решёток с одинаковыми периодами, но с различными интенсивностями записывающих пучков: спектры пропускания в конце процессов записи (a); динамика дифракционной эффективности (b)


Puc.~5.~ Графики спектров пропускания двух наложенных отражательных решёток с различными периодами: 220 и 245 нм (кривые 1 и 2) (a); 220 и 223 нм (кривые 1 и 2) (b)

их ДЭ от длительности засветки при интенсивностях 20 и 10 м B_T/cm^2 (кривые 1 и 2).

На рисунке динамика ДЭ в начале засветки для решёток 1 и 2 примерно одинакова, однако по мере роста дифракционной эффективности заметны отличия в графиках, а в состоянии насыщения значения ДЭ этих решёток равны $\sim \!\! 56$ и $36\,\%$. Длительность индукционного периода в случае меньшей интенсивности возросла до $\sim \!\! 4$ с, однако соответствующая энергия нейтрализации ингибиторов осталась примерно той же.

Далее были выполнены эксперименты с одновременной записью двух отражательных решёток с различными периодами, но с одинаковой энергией засветки. На рис. 5 показаны результаты этих экспериментов.

Отметим, что глубины спектральных провалов (а значит, и ДЭ) в этих экспериментах примерно одинаковы; расчёты показывают, что ДЭ \sim 23 %. Этот результат согласуется с теорией нелокальной полимеризации и означает, что при указанных значениях периодов решёток общее количество образовавшегося фотополимера распределяется без конкуренции равным образом между двумя решётками.

Puc.~6.~ Графики динамики ДЭ двух наложенных решёток с задержкой записи одной решётки относительно другой: задержка $t_0=5$ с $(a); t_0=3$ с (b)

Запись с задержкой засветки одной наложенной решётки относительно другой. Эксперименты проводились следующим образом: в исходном состоянии образец ГФПМ установлен непосредственно перед полупрозрачным зеркалом (по ходу записывающего луча), источник белого света выключен, лазеры 1 и 2 включены, а затворы 3 и 4 (см. рис. 1) закрыты; затем открывается затвор 3 и синхронно с ним включается источник белого света, через промежуток времени t_0 открывается затвор 4; по истечении заданной длительности лазерной засветки оба затвора закрываются. Цель такого эксперимента — наблюдение за динамикой записи двух наложенных решёток при неравных начальных условиях.

В одном из экспериментов, результат которого показан на рис. 6, a, длительность задержки засветки решётки № 2 (динамика которой представлена кривой 2) относительно засветки решётки № 1 составила $t_0 = 5$ с. Ясно, что для решётки № 1 начальный участок (кривая 1) графика динамики ДЭ похож на аналогичный участок для одиночной решётки (рис. 2, b). Однако с момента t_0 , когда имеет место одновременная запись уже двух решёток, скорость роста ДЭ падает, а её значение в состоянии насыщения ~ 45 %; для решётки № 2 индукционный период практически отсутствует, значение ДЭ в состоянии насыщения менее 10 %.

В другом эксперименте (рис. 6, b) длительность задержки засветки решётки № 2 относительно засветки решётки № 1 составила 3 с. Видно, что для решётки № 1 скорость роста ДЭ (кривая 1) до момента одновременной записи двух решёток меньше, чем в первом эксперименте; значение ДЭ в состоянии насыщения для первой решётки ~ 40 %, для второй ~ 20 %.

Таким образом, для решётки № 1 влияние фактора одновременной записи проявляется в уменьшении результирующего значения ДЭ и в снижении скорости её роста с момента начала записи решётки № 2, для которой упреждающая засветка решётки № 1 способствует снижению индукционного периода.

Обсуждение экспериментальных данных в сравнении с расчётами согласно теоретическим моделям. Сравним результаты экспериментов с расчётными данными, полученными с помощью известных феноменологических моделей формирования голографических решёток в фотополимерном материале, хотя и являющихся значительным упрощением реальных многопараметрических физико-химических процессов, но учитывающих главные из них, а именно: диффузию свободного мономера под воздействием градиента его концентрации при засветке периодической картиной интерференции записывающих пучков и последующую конверсию мономера в фотополимер [4, 7, 10].

Теоретические основы. Суть диффузионной модели записи голографической решётки в фотополимере в случае засветки в виде картины интерференции лазерных пучков может быть выражена в виде следующего уравнения (одномерный случай) [9, 10]:

$$\frac{\partial M(x,t)}{\partial t} = D \frac{\partial^2 M(x,t)}{\partial x^2} - k_R I \left(1 + m \cos \left(\frac{2\pi x}{\Lambda} \right) \right)^{\delta} M(x,t), \tag{1}$$

где M(x,t) — концентрация свободного мономера, изменяющаяся в пространстве (x) и времени (t); k_R — константа реакции полимеризации, учитывающая процессы как роста, так и обрыва цепи фотополимера; δ — степенной показатель зависимости скорости полимеризации от скорости инициации этой реакции (от интенсивности записывающего излучения I); D — коэффициент диффузии свободного мономера, часто принимаемый как константа; m — контраст интерференционной картины с периодом $\Lambda = \lambda/(2n\cos\theta_0)$, где λ , n, θ_0 — длина волны лазерного излучения, показатель преломления ГФПМ, угол падения записывающего пучка внутри голограммы относительно нормали к её поверхности.

В результате диффузии мономера, описываемой в выражении (1) первым слагаемым после знака равенства, и последующего его фотоиндуцированного превращения в полимер (второе слагаемое в этом выражении) происходит изменение показателя преломления согласно картине засветки. Следуя [9], динамику такого изменения (в пределах одной полосы интерференционной картины) с точностью до поправочных коэффициентов можно выразить формулой

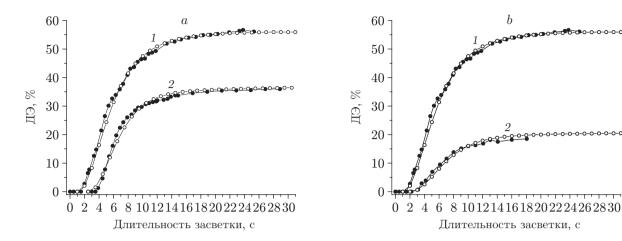
$$\Delta n(t) = \frac{m\tau_p \, \Delta n_{\text{max}}}{\tau_D + \tau_p} (1 - \exp(1 - \exp(t/\tau_p))) - \frac{\tau_D}{\tau_D + \tau_p} (1 - \exp(1 - \exp(t/\tau_p))) \exp(-t/\tau_D), (2)$$

где основными расчётными параметрами являются: $\Delta n_{\rm max}$ — максимально достижимое значение изменения показателя преломления, зависящее от количества поглощённой световой энергии, а также от концентрации и оптических свойств компонент ГФПМ [4, 10]; τ_D — время диффузии мономера на расстояние периода решётки; τ_p — время конверсии мономера в фотополимер, зависящее в первом приближении лишь от константы полимеризации k_R и интенсивности засветки I.

Поскольку в наших экспериментах наблюдаемой величиной является дифракционная эффективность голограммы (часто обозначаемая как η), воспользуемся известной формулой, связывающей эту величину с $\Delta n(t)$ [19]:

$$\eta(t) = \tanh^2(\alpha m \,\Delta n(t)),\tag{3}$$

где $\alpha \sim \alpha(L, \lambda, \theta_0)$ — поправочный коэффициент, учитывающий оптические параметры и ДЭ экспериментальных образцов решёток.


При формировании одиночной решётки с равными интенсивностями записывающих опорного I_{r1} и предметного пучков I_{s1} контраст интерференционной картины равен

$$m = \frac{2\sqrt{I_{r1}I_{s1}}}{I_{r1} + I_{s1}} = 1. (4)$$

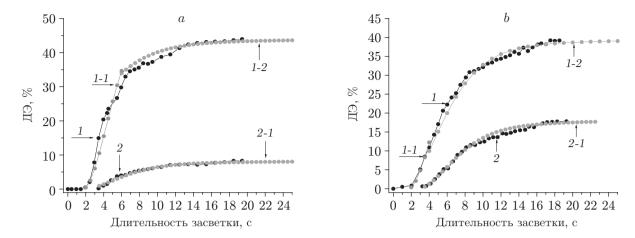
В случае записи двух наложенных решёток контраст m_s для каждой из них снижается:

$$m_s = \frac{2\sqrt{I_{r1}I_{s1}}}{I_{r1} + I_{s1} + I_{r2} + I_{s2} + 2\sqrt{I_{r2}I_{s2}}\cos(\pi x/\Lambda_2)} < 1,$$
(5)

где I_{r2}, I_{s2} — интенсивности записывающих опорного и предметного пучков второй решётки с периодом Λ_2 ; при усреднении по периоду интерференционной картины можно считать $m_s \sim 1/2$.

Puc. 7. Графики экспериментальных и расчётных данных динамики ДЭ: a — для одиночных решёток с интенсивностями записывающих пучков 20 и 10 мВт/см 2 (группы кривых 1 и 2); b — для одиночной решётки и одной из двух наложенных решёток при их одновременной записи (группы кривых 1 и 2)

Анализ результатов расчётов. На рис. 7, а символами «●» и «○» показаны экспериментальные и расчётные данные динамики ДЭ для одиночных решёток с различными интенсивностями записывающих пучков 20 и 10 мВт/см 2 (группы кривых 1 и 2).


Расчёты выполнены по формулам (2), (3) с учётом известных сведений [8, 10, 20] о том, что коэффициент диффузии мономера в использованных нами экспериментальных образцах ГФПМ $D \sim 10^{-10}~{\rm cm}^2/{\rm c}$, а $\delta = 1/2$. Отметим, что формула (2) не описывает процессы индукционного периода, поэтому при сравнении с экспериментальными данными соответствующий интервал засветки не представлен.

Поскольку время диффузии мономера равно $\tau_D=1/D(2\pi/\Lambda)^2$ [4, 8], то в расчётах применительно к исследуемым решёткам этот параметр варьировался в интервале $0.12 < \tau_D < 0.17$ с. Значение τ_p подбиралось в диапазоне 1–20 с по критерию, чтобы среднеквадратическое отклонение (СКО) между всеми аппроксимирующими и экспериментальными отсчётами не превышало ± 5 % (более точная подгонка не имеет смысла, так как воспроизводимость экспериментальных данных ДЭ такого же порядка величины). Путём перебора вариантов аппроксимаций установлено, что желаемый результат достигается, если параметр τ_p считать переменным (возрастающим) во времени, такое замедление процесса полимеризации можно объяснить повышением вязкости компонент ГФПМ по мере засветки [21]. Для кривой 1 (см. рис. 7) выбрано $\tau_p(t) \sim 5 \exp(t/25)$ с, при этом в интервале 0 < t < 25 с параметр τ_p варьируется в пределах $5 < \tau_p < 13,6$ с, а упомянутое СКО составило $\sim 1,5$ %.

С помощью уточнённой формулы (2) получены расчётные графики динамики ДЭ для остальных изготовленных решёток, в том числе с интенсивностью записывающего пучка 10 мBt/cm^2 , для которой выбраны расчётные параметры $m=1, \Delta n_{\max}=0.025 \cdot 0.715$.

На рис. 7, b к группе кривых 1, относящихся к ДЭ для одиночной решётки при интенсивности $I=20~\mathrm{мBT/cm^2}$, добавлена группа кривых 2, описывающих экспериментальные и расчётные данные ДЭ одной из двух наложенных решёток при их одновременной записи (см. рис. 5). Расчётный график получен при параметрах $\tau_D=0.15~\mathrm{c},~\tau_p(t)\sim 5\exp(t/25)~\mathrm{c}$ и согласно формуле (5) $m_s=1/2$.

Моделирование экспериментов по записи двух наложенных решёток с задержкой начала засветки второй решётки относительно первой выполним путём комбинирования ре-

Puc.~8.~ Графики экспериментальных и расчётных данных динамики ДЭ двух наложенных решёток с задержкой записи одной относительно другой: a — задержка 5 с; b — задержка 3 с

зультатов записи одиночных решёток на момент t_0 (длительность задержки засветки решётки № 2 относительно начала засветки решётки № 1) с параметрами одновременной записи этих двух наложенных решёток. Будем считать, что динамика изменения показателя преломления наложенной решётки № 1 имеет вид

$$\Delta n_{s_1}(t) = \begin{cases} \Delta n_1(t), & t_0 \ge t > 0; \\ \Delta n_1(t_0) + \Delta n_{s_2}(t), & t > 0, \end{cases}$$
 (6)

где $\Delta n_1(t_0)$ — приращение показателя преломления одиночной решётки на момент t_0 , $\Delta n_{s_2}(t)$ — динамика изменения показателя преломления наложенной решётки \mathbb{N} 2, для которой в соответствии с формулой (5) контраст интерференционной картины засветки $m_s = 1/2$, а максимальное значение $\Delta n_{s_{\max}} \sim \Delta n_{\max} - \Delta n_1(t_0)$; в соответствии с результатами экспериментов с одиночными решётками (см. рис. 2, b) примем $\Delta n_{\max} = 0.025$, а значение $\Delta n_1(t_0)$ вычислим по формуле (2) при параметрах $\tau_D = 0.15$ с и $\tau_D(t) \sim 5 \exp(t/25)$ с.

На рис. 8, a показан результат такого моделирования при длительности задержки засветки решётки № 2 относительно начала записи решётки № 1 $t_0 = 5$ с. Кривыми 1 и 2 представлены экспериментальные (чёрные круги) и расчётные (серые круги) графики динамики ДЭ для этих решёток; модельная кривая 1-1 соответствует динамике записи решётки № 1 до момента t_0 , когда $\Delta n_1(t_0) \sim 0.01$; кривая 1-2 рассчитана в соответствии с формулой (6) и описывает динамику ДЭ решётки № 1 при её записи одновременно с решёткой № 2 при m = 1/2; кривая 2-1 характеризует динамику ДЭ решётки № 2, начиная с момента t = 5 с и далее, одновременно с решёткой № 1, при этом $\Delta n_{s_{\text{max}}} = 0.025$ -0.01, $m_s = 1/2$. Для решётки № 1 погрешность аппроксимации экспериментальных данных расчётной кривой, выраженная в СКО, составила 2.14 % (в единицах измерения ДЭ).

Для проверки пригодности данного подхода аппроксимации динамики ДЭ проведён аналогичный эксперимент при длительности задержки засветки $t_0=3$ с. Результат симуляции показан на рис. 8, b, где кривыми 1 и 2 (символы «•») представлены экспериментальные графики динамики ДЭ для этих решёток; расчётная кривая 1-1 соответствует динамике записи решётки № 1 до момента t_0 , $\Delta n_1(t_0)=0.0062$; кривая 1-2 рассчитана в соответствии с формулой (6) и описывает динамику ДЭ решётки № 1 при её записи одновременно с решёткой № 2 при m=1/2; кривая 2-1 описывает динамику ДЭ решётки № 2 при её записи одновременно с решёткой № 1, начиная с момента t=3 с и далее, при этом $\Delta n_{s_{\max}}=0.0232, m_s=1/2, \tau_p(t)\sim 5\exp(t/25)$ с.

Видно, что экспериментальные и расчётные (аппроксимирующие) кривые качественно согласуются. Вместе с тем следует отметить, что указанные значения $\Delta n_{s_{\text{max}}}$ не совпали в точности с расчётами по формуле (6), это обстоятельство можно объяснить ограниченностью принятой модели, не учитывающей особенности темновой динамики ДЭ, когда процессы полимеризации продолжают развиваться и после выключения засветки или изменения её режима [22]. Этот фактор будет учтён в дальнейшем.

Заключение. Получены новые экспериментальные данные о динамике дифракционной эффективности наложенных объёмных отражательных голограмм с периодом решёток ~250 нм при их одновременной записи в фотополимерном материале BAYFOL HX ТР. Установлен характер и параметры взаимного влияния двух наложенных решёток с задержкой записи одной из них относительно другой.

Выявлено, что на динамике ДЭ практически не сказываются вариации времени диффузии мономера в интервале $0.12 < t_D < 0.17$ с, но существенно проявляется нестационарное поведение параметра фотополимеризации τ_p , который в наших экспериментах в интервале времени засветки 0 < t < 25 с и интенсивности $20~{\rm MBT/cm^2}$ изменяется в пределах $5 < \tau_p < 15$ с.

В рамках феноменологической теории известные уравнения динамики фотоиндуцированного изменения показателя преломления ГФПМ доработаны с учётом нестационарного характера параметра τ_p . Расчётные зависимости динамики ДЭ, полученные с помощью уточнённых формул, хорошо согласуются с экспериментальными данными (СКО \sim 2 %).

Эксперименты подтверждают справедливость известной нелокальной теории фото-полимеризации применительно и к отражательным голограммам с периодом решёток ~ 250 нм, а именно: процессы диффузии мономера и фотополимеризации для этих решёток протекают независимо от их пространственного распределения и момента засветки.

Результаты исследования помогут углубить понимание процессов голографической записи не только для использованных нами образцов ГФПМ, но и в общем плане, в частности, они указывают на необходимость учёта нестационарности процесса фотополимеризации, а также позволяют полнее реализовать возможности этих материалов на практике путём выбора оптимальных режимов записи.

Благодарности. Автор выражает благодарность к.х.н. Е. В. Васильеву за полезные обсуждения результатов работы.

Финансирование. Работа выполнена при поддержке Министерства науки и высшего образования РФ (государственная регистрация AAA-A17-117053110007-0).

СПИСОК ЛИТЕРАТУРЫ

- 1. **Dhar L., Curtis K., Tackitt M. et al.** Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems // Opt. Lett. 1998. **23**, Iss. 21. P. 1710–1712.
- 2. Bruder F.-K., Bang H., Fäcke T. et al. Precision holographic optical elements in bayfol HX photopolymer // Proc. SPIE. 2016. 9771. 977103.
- 3. Watanabe M., Matsuyama T., Kodama D. et al. Mass-produced color graphic arts holograms // Proc. SPIE. 1999. **3637**. P. 204–212.
- 4. **Bruder F.-K.**, **Fäcke T.**, **Rölle T.** The chemistry and physics of bayfol HX film holographic photopolymer // Polymers. 2017. **9**, N 10. P. 472–494.
- 5. **Zhao G., Mouroulis P.** Diffusion model of hologram formation in dry photopolymer materials // Journ. Modern Optics. 1994. **41**, N 10. P. 1929–1939.
- 6. Sheridan J. T., Lawrence J. R. Nonlocal-response diffusion model of holographic recording in photopolymer // JOSA A. 2000. 17, Iss. 6. P. 1108–1114.

- 7. Gleeson M. R., Sheridan J. T. A review of the modeling of free-radical photo polymerization in the formatio of holographic gratings // Journ. Opt. A. Pure Appl. Opt. 2009. 11, N 9. P. 1–12.
- 8. Bruder F.-K., Deuber F., Facke T. et al. Reaction-diffusion model applied to high resolution BayfolR HX photopolymer // Proc. SPIE. 2010. 7619. 76190I.
- 9. Piazzolla S., Jenkins B. K. Dynamics during holographic exposure in photopolymers for single and multiplexed gratings // Journ. Modern Opt. 1999. 46, N 15. P. 2079–2110.
- Piazzolla S., Jenkins B. K. First-harmonic diffusion model for holographic grating formation in photopolymers // JOSA. 2000. 17, N 7. P. 1147–1157.
- 11. **Шелковников В. В., Васильев Е. В., Герасимова Т. Н. и др.** Динамика импульсной записи голографических дифракционных решёток в фотополимерном материале // Оптика и спектроскопия. 2005. **99**, № 5. С. 838–847.
- 12. **Jurbergs D., Bruder F., Deuber F. et al.** New recording materials for the holographic industry // Proc. of SPIE. 2009. **7233**. 72330K.
- 13. **Денисюк Ю. Н.** Об отображении оптических свойств объекта в волновом поле рассеянного им излучения // Оптика и спектроскопия. 1963. **XV**, вып. 4. С. 522–532.
- 14. **Бабин С. А., Васильев Е. В., Ковалевский В. И. и др.** Методы и устройства тестирования голографических фотополимерных материалов // Автометрия. 2003. **39**, № 2. С. 57–70.
- 15. **Пат. 165622 РФ.** Устройство тестирования голографических светочувствительных материалов /Е. Ф. Пен. Опубл. 27.10.2016, Бюл. № 30.
- 16. Moothanchery M., Naydenova I., Toal V. Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film // Opt. Express. 2011. 19, N 14. P. 13395–13404.
- 17. Smothers W. K., Monroe B. M., Weber A. M. et al. Photopolymers for holography // Proc. SPIE. 1990. 1212. P. 20–29.
- 18. Gleeson M. R., Kelly J. V., Close C. E. et al. Effects of absorption and inhibition during grating formation in photopolymer materials // JOSA B. 2006. 23, N 10. P. 2079–2088.
- 19. **Kogelnik H.** Coupled wave theory for thick hologram gratings // The Bell System Technical Journ. 1969. **48**, N 9. P. 2909–2947.
- 20. **Gleeson M. R., Liu S., Sheridan J. T.** Improvement of photopolymer materials for holographic data storage // Journ. Mater. Sci. 2009. **44**. P. 6090–6099.
- 21. **Guo J.**, **Gleeson M. R.**, **Liu S.**, **Sheridan J. T.** Analysis of the effects of viscosity, volume, and temperature in photopolymer material for holographic applications // Proc. SPIE. 2013. **8776**. 87760J.
- 22. **Gleeson M. R., Liu S., McLeod R. R. et al.** Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation // JOSA B. 2009. **26**, N 9. P. 1746–1754.

Поступила в редакцию 23.04.2020 После доработки 08.06.2020 Принята к публикации 29.06.2020