УДК 519.63

РАСЧЕТ С ИСПОЛЬЗОВАНИЕМ СЕТОЧНО-ХАРАКТЕРИСТИЧЕСКОГО МЕТОДА НАПРЯЖЕННОГО СОСТОЯНИЯ ЖЕЛЕЗНОДОРОЖНОГО ПУТИ С ОТРЫВАМИ ШПАЛЫ ОТ НАСЫПИ

А. А. Кожемяченко, И. Б. Петров, А. В. Фаворская

Московский физико-технический институт, 141701 Долгопрудный, Россия Научно-исследовательский институт системных исследований РАН, 117218 Москва, Россия E-mails: anton-kozhemyachenko@yandex.ru, petrov@mipt.ru, aleanera@yandex.ru

С использованием сеточно-характеристического метода в случае структурированных сеток моделируется процесс повреждения железнодорожного пути при высокоскоростном движении тяжеловесных составов на его различных участках. Исследован процесс отрыва шпалы от балластного слоя. В результате компьютерного моделирования получены различные волновые картины и картины динамического распределения компонент тензора напряжений Коши (давления) при движении состава по железнодорожному пути. Описан процесс образования трещин.

Ключевые слова: сеточно-характеристический метод, численное моделирование, система колесо — рельс, волновые явления, железнодорожный путь.

DOI: 10.15372/PMTF20210219

Введение. От состояния железнодорожного полотна зависит безопасность высокоскоростного движения тяжеловесного подвижного состава. При решении задач неразрушающего контроля рельсов [1], а также для предотвращения контактно-усталостных повреждений рельсов необходимо использовать численное моделирование. Кроме того, численное моделирование позволяет определить динамическое распределение нагрузки на железнодорожном полотне, исследовать волновые процессы [2] и модифицировать предложенные ранее методы расчета контакта колесо — рельс [3]. С использованием аналитического подхода, предложенного в работе [3], в [4] получено граничное условие, учитывающее три стадии взаимодействия поврежденного колеса с железнодорожным полотном, а также проведено моделирование распределения динамической нагрузки при движении элемента подвижного состава. Задачи железнодорожной безопасности в течение длительного времени являются важным объектом исследований. Согласно данным [5] появление воздушной прослойки между насыпью и шпалой (свищ), а также других повреждений может быть обусловлено влиянием различных техногенных факторов, таких как неправильная трам-

Работа выполнена в рамках государственного задания Научно-исследовательского института системных исследований РАН "Проведение фундаментальных научных исследований (47 ГП)" по теме № 0580-2021-0005 "Математическое моделирование динамических процессов в деформируемых и реагирующих средах с использованием многопроцессорных вычислительных систем".

[©] Кожемяченко А. А., Петров И. Б., Фаворская А. В., 2021

бовка (недостаточная компрессия), асимметричная трамбовка, загрязнение насыпи балластом или недостаточная толщина насыпи, недостаток в дренажной системе, недопустимое значение нагрузки, увеличение цикла нагружения и как следствие усталостные явления, явления ползучести, неправильная инфраструктура, дефекты колес и подавляющий ударный эффект, а также влиянием естественных факторов — климата, в частности циклического расширения и сжатия материалов под действием температуры [6]. В [7] приводится статистика, согласно которой в 50 % случаев шпала находится в подвешенном состоянии, т. е. наличие воздушной прослойки между шпалой и насыпью — явление, которое может оказывать основное влияние на процесс разрушения рельсового полотна в целом. В [8] представлена компьютерная модель, описывающая динамическое взаимодействие поезда и рельсового полотна. Отмечается, что скорость разрушения пути возрастает, если шпала, под которой образовалась воздушная прослойка, слева и справа окружена другими шпалами со свищами. При исследовании скоростного движения тяжеловесных составов важной проблемой является оценка предельных значений характерных для рассматриваемого движения параметров железнодорожной системы колесо — рельс. Например, в [9] исследовано поведение системы колесо — рельс при увеличении осевых нагрузок, грузонапряженности, скорости движения с использованием критерия стойкости к изнашиванию и контактно-усталостным повреждениям (КУП) и с учетом способности без буксования передавать тангенциальную силу. КУП в рельсах и их износ — наиболее распространенные виды дефектов, характерные для рельсов старого и нового образца. Различные модели образования КУП рассмотрены в [10]. Для моделирования волновых процессов используются конечно- и бесконечно-элементные подходы. Важной проблемой является также наличие остаточных напряжений в железнодорожных колесах. В [11] выполнено математическое моделирование возникновения в рельсе и колесе различных дефектов и исследовано их влияние на вибрации в грунте, появляющиеся при прохождении железнодорожного состава. В [12] представлена модель распространения трещин вследствие развития КУП и износа железнодорожных рельсов и колес. Экспериментальное исследование этой модели проводилось на голландских железных дорогах в течение пяти лет. Модель распространения трещин может использоваться совместно с моделью движения транспортного средства и позволяет определить фактическую глубину трещины. Согласно результатам моделирования, представленным в работе [13], увеличение вертикальной силы приводит к увеличению скорости износа и уменьшению твердости рабочих поверхностей колес и рельсов.

В данной работе с использованием сеточно-характеристического метода выполнен расчет параметров волновых процессов, происходящих в железнодорожном полотне. Данный метод применяется при решении задач неразрушающего контроля [1] и ультразвуковой дефектоскопии, сейсморазведки, сейсмостойкости и др.

1. Сеточно-характеристический метод исследования линейно-упругих сред. Решается полная система уравнений, описывающих состояние сплошной линейно-упругой среды. Компоненты вектора скорости движения V и симметричного тензора Коши σ для линейно-упругой среды описываются следующей системой уравнений:

$$\rho \mathbf{V}_t = (\nabla \cdot \sigma)^{\mathrm{T}}; \tag{1}$$

$$\sigma_t = \lambda (\nabla \cdot \boldsymbol{V}) I + \mu (\nabla \otimes \boldsymbol{V} + (\nabla \otimes \boldsymbol{V})^{\mathrm{T}}).$$
⁽²⁾

Уравнение (1) является локальным уравнением движения. В уравнении (2), полученном из закона Гука, λ , μ — параметры Ламе, определяющие свойства упругого материала; ρ — плотность материала; I — единичный тензор второго ранга. Для численного решения системы уравнений (1), (2) применяется сеточно-характеристический метод [1, 4, 14], с помощью которого можно построить корректные численные алгоритмы для расчета граничных точек и точек контактирующих сред, имеющих разные параметры Ламе и (или) плотности.

Для изотропной линейно-упругой среды в двумерном случае вектор неизвестных задается соотношением

$$\boldsymbol{q} = (\boldsymbol{V}, \sigma)^{\mathrm{T}} = (v_1, v_2, \sigma_{11}, \sigma_{22}, \sigma_{12})^{\mathrm{T}}.$$

Систему (1), (2) в двумерном случае можно представить в виде

$$\boldsymbol{q}_t + A_1 \boldsymbol{q}_x + A_2 \boldsymbol{q}_y = 0.$$

Далее проводится расщепление системы уравнений по двум направлениям и получается выражение вида

$$\boldsymbol{q}_t + A_1 \boldsymbol{q}_x = 0. \tag{3}$$

Матрица A_1 гиперболическая, имеет множество собственных векторов и представима в виде

$$A_1 = \Omega^1 \Lambda^1 (\Omega^1)^{-1}.$$

Матрица Ω^1 составлена из собственных векторов, собственные значения матрицы A_1 есть элементы диагональной матрицы Λ^1 . В результате (3) записывается в виде

$$\boldsymbol{q}_t + \Omega^1 \Lambda^1 (\Omega^1)^{-1} \boldsymbol{q}_x = 0.$$
(4)

Дальнейшие вычисления включают три этапа. На первом этапе система (4) умножается на матрицу $(\Omega^1)^{-1}$ и осуществляется переход к новым переменным:

$$\boldsymbol{\omega}(x, y, t) = (\Omega^1)^{-1} \boldsymbol{q}(x, y, t),$$

на втором этапе с помощью метода характеристик или конечно-разностных схем решаются одномерные уравнения переноса, на третьем этапе выполняется обратная замена:

$$\boldsymbol{q}(x, y, t+\tau) = \Omega^{1} \boldsymbol{\omega}(x, y, t+\tau).$$

Для расчета параметров процесса распространения возмущения в многослойной среде используется схема Русанова третьего порядка точности по пространству и времени, которая устойчива для чисел Куранта, не превышающих единицу.

2. Постановка задачи. Используемая в качестве области интегрирования (расчетной области) модель железнодорожного пути при движении подвижного состава представлена на рис. 1, ее характеристики приведены в таблице ($c_{\rm P}, c_{\rm S}$ — скорость P- и S-волн, м/с; ρ — плотность, кг/м³). В модель входят элементы из разных материалов: рельсы, шпалы, насыпь, слой осадочных пород. На нижней, левой и правой границах области интегрирования, показанной на рис. 1, для каждого материала выполняются неотражающие граничные условия. На границах между слоями материалов задаются условия полного прилипания

$$\boldsymbol{v}^a = \boldsymbol{v}^b = \boldsymbol{V}, \qquad \boldsymbol{f}^a = -\boldsymbol{f}^b. \tag{5}$$

Рис. 1. Модель железнодорожного пути: 1 — рельс, 2 — шпалы, 3 — насыпь, 4 — слой осадочных пород

Часть железнодорожного пути	Материал	$c_{\rm P},{\rm m/c}$	$c_{\rm S}$, м/с	ho, кг/м ³
Рельсы	Сталь	5740	3092	7800
Шпалы	Дерево	1000	500	400
Насыпь	Гравий	800	400	2000
Слой грунта под насыпью	Осадочная порода	2000	1000	2000

Параметры упругости материалов

На верхней границе рельса, за исключением области, в которой задано давление в системе колесо — рельс, а также на границах всех прямоугольных областей, находящихся между рельсом, шпалами и насыпью, ставится условие свободной границы

$$\boldsymbol{f} = \boldsymbol{0}.$$
 (6)

В (5), (6) V — скорость контактной границы; $f = \sigma \cdot n$ — плотность внешних сил; n — внешняя нормаль к поверхности рассматриваемого слоя.

Отрыв шпалы (железнодорожный свищ) от балластного слоя (насыпи) является опасным дефектом железнодорожного пути, возникающим при его длительной эксплуатации или вследствие ошибок, допущенных на этапе проектирования и строительства пути. В данной работе рассмотрены два варианта компьютерного моделирования отрыва шпалы от насыпи, в которых учитывается наличие одного или пяти свищей. В первом варианте отрыв моделируется прямоугольными воздушными прослойками конечной глубины (10 см) под шпалами, во втором — отсутствием контакта между нижней границей шпалы и верхней границей насыпи, на которых заданы условия свободной границы.

Исследование проведено при скоростях движения элемента подвижного состава 15 и 120 км/ч. Физические размеры области интегрирования $25,0 \times 2,6$ м. Шаг по времени равен $\tau = 8,5 \cdot 10^{-7}$ с, шаги интегрирования по пространству равны $h_x = 10^{-2}$ м, $h_z = 5 \cdot 10^{-3}$ м. Масса элемента подвижного состава, движущегося по железнодорожному пути, составляет 90 т.

3. Результаты исследования. Расчеты выполнены с помощью пакета Rect, разработанного в Московском физико-техническом институте. Для визуализации результатов моделирования использовался пакет ParaView.

Исследование проблемы отрыва шпалы от балластного слоя разделено на два этапа: статический и динамический.

В статической постановке на верхней границе рельса задается источник начального возмущения. Рассмотрены волновые картины полей скоростей, соответствующие трем вариантам конфигурации железнодорожного пути:

1) железнодорожное полотно, не содержащее дефектов;

2) железнодорожное полотно, содержащее дефект конечной глубины (10 см);

3) железнодорожное полотно, содержащее дефект, который задается с помощью условия (6) и условия отсутствия полного прилипания (5).

На рис. 2 представлены результаты моделирования скорости распространения возмущения. На рис. 2, 6, 6 выделены зоны, в которых заданы отрывы шпал от насыпи. Видно, что волновой фронт, распространяющийся по расчетной области от источника, не проходит в насыпь через шпалу, под которой образовался свищ. Ниже показано, что в этот момент в зоне над свищом образуются области положительных растягивающих напряжений.

На рис. 3–6 представлены результаты моделирования в случае движения одного элемента подвижного состава по железнодорожному полотну при наличии в нем одного и пяти свищей. В качестве источника внешних сил выбрано граничное условие для давления в системе колесо — рельс [4].

a — в отсутствие дефекта,
б — при наличии дефекта конечной глубины, в — при наличии дефекта, модел
ируемого условиями свободных границ; ИВ — источник возмущений

Рис. 3. Распределение главной вертикальной компоненты тензора напряжений Коши и образование трещины в случае пяти свищей (скорость состава — 120 км/ч, $t = 2,8475 \cdot 10^{-2}$ с):

1–5 — номера отрывов шпал от насыпи

Рис. 4. Распределение главной вертикальной компоненты тензора напряжений Коши и образование трещины в случае пяти свищей (скорость состава — $15 \text{ км/ч}, t = 3,145 \cdot 10^{-2} \text{ c}$):

1–5 — номера отрывов шпал от насыпи

Рис. 5. Распределение главной вертикальной компоненты тензора напряжений Коши и образование трещины в случае пяти свищей (скорость состава — $15 \text{ км/ч}, t = 2,55 \cdot 10^{-2} \text{ c}$):

1-5 — номера отрывов шпал от насыпи

Рис. 6. Распределение главной вертикальной компоненты тензора напряжений Коши и образование трещины в случае одного свища (скорость состава — 120 км/ч, $t = 3,6125 \cdot 10^{-2}$ с):

1 — номер отрыва шпал от насыпи

Рис. 7. Образование трещин в момент времени t = 0.04 с

На рис. 3 представлены результаты численного моделирования для случая образования первой трещины в рельсе над вторым отрывом шпалы от насыпи, на рис. 4 в окрестности третьего отрыва. На рис. 5 в модели отрывов конечной глубины трещина образуется вблизи зоны, в которой задан первый свищ, на рис. 6 — над единственным отрывом. Результаты компьютерного моделирования, приведенные на рис. 3, 4, 6, 7, соответствуют модели, в которой отрывы задаются с использованием условия свободной границы (6) и условия отсутствия полного слипания (5) между шпалами, под которыми задается отрыв, и насыпью.

Также следует отметить, что в момент образования трещины от нее распространяются волны сжимающих и растягивающих напряжений, которые могут быть одной из причин возникновения новых дефектов в железнодорожном полотне, как, например, в случае постановки с одним отрывом. На рис. 7 выделены области, в которых появляются трещины при дальнейшем движении состава в случае задания одного свища.

Заключение. Таким образом, наличие отрыва шпалы от балластного слоя в рельсовом полотне приводит к повреждению железнодорожных путей при прохождении состава. Результаты численных расчетов подтверждают существенную опасность появления отрывов при осуществлении железнодорожных перевозок. Формирование трещин происходит как в верхней части рельса, так и в его нижней части. При появлении первых трещин от них распространяется волна, которая может быть одной из причин образования новых повреждений. КУП образуются при различных скоростных режимах и при различном количестве отрывов.

ЛИТЕРАТУРА

- 1. Фаворская А. В., Петров И. Б., Кабисов С. В. Моделирование ультразвуковых волн в железнодорожных рельсах с явным выделением дефектов // Докл. АН. 2018. Т. 481, № 1. С. 20–23.
- Favorskaya A. V., Petrov I. B. The use of full-wave numerical simulation for the investigation of fractured zones // Math. Models Comput. Simulat. 2019. V. 11, N 4. P. 518–530.
- Loktev A. A., Sychev V. P., Buchkin V. A., et al. Determination of the pressure between the wheel of the moving railcar and rails subject to the defects // Proc. of the 2017 Intern. conf. "Quality management, transport and information security, information technologies", St. Petersburg (Russia), 24–30 Sept. 2017. S. l.: IEEE, 2017. P. 748–751.
- Favorskaya A., Khokhlov N. Modeling the impact of wheelsets with flat spots on a railway track // Proc. Comput. Sci. 2018. V. 126. P. 1100–1109.
- Zakeri J. A., Rezvani F. H. Failures of railway concrete sleepers during service life // Intern. J. Construct. Engng Management. 2012. V. 1, N 1. P. 1–5.
- Olsson E. L., Zackrisson P. Long-term measurement results: Final report / Banverket. N 2B/000120/T2/DA. Borlänge, 2002. V. 2.
- Augustin S., Gudehus G., Huber G., Schünemann A. Numerical model and laboratory tests on settlement of ballast track // System dynamics and long-term behaviour of railway vehicles, track and subgrade. Berlin; Heidelberg: Springer, 2003. P. 317–336.
- Lundqvist A., Dahlberg T. Load impact on railway track due to unsupported sleepers // J. Rail Rapid Transit. 2005. V. 219, N 2. P. 67–77.
- Горячева И. Г., Захаров С. М. О пределах системы колесо рельс в условиях тяжеловесного движения (трибологический аспект) // Вакуумно-левитационные транспортные системы: научная основа, технологии и перспективы для железнодорожного транспорта. М.: ООО "PAC", 2017. С. 27–42.

- 10. Захаров С. М., Торская Е. В. Подходы к моделированию возникновения поверхностных контактно-усталостных повреждений в рельсах // Вестн. Науч.-исслед. ин-та ж.-д. транспорта. 2018. Т. 77, № 5. С. 259–268.
- Kouroussis G., Alexandrou G., Connolly D. P., et al. Railway-induced ground vibrations in the presence of local track irregularities and wheel flats // Proc. of the 5th Intern. conf. on computational methods in structural dynamics and earthquake engineering, Crete Island (Greece), 25–27 May 2015. Athens: Nat. Tech. Univ. of Athens, 2015. P. 26–37.
- Dirks B., Enblom R., Ekberg A., Berg M. The development of a crack propagation model for railway wheels and rails // Fatigue Fracture of Engng Materials Structures. 2015. V. 38, N 12. P. 1478–1491.
- Huang Y. B., Shi L. B., Zhao X. J., et al. On the formation and damage mechanism of rolling contact fatigue surface cracks of wheel/rail under the dry condition // Wear. 2018. V. 400. P. 62–73.
- Favorskaya A. V., Zhdanov M. S., Khokhlov N. I., Petrov I. B. Modelling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid-characteristic method // Geophys. Prospect. 2018. V. 66, N 8. P. 1485–1502.

Поступила в редакцию 10/III 2020 г., после доработки — 11/VI 2020 г. Принята к публикации 29/VI 2020 г.