УДК 532.59; 551.446

ЭКСПЕРИМЕНТАЛЬНО-ТЕОРЕТИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ПРЕДЕЛЬНОЙ АМПЛИТУДЫ И МИНИМАЛЬНОЙ ДЛИТЕЛЬНОСТИ УЕДИНЕННЫХ ВОЛН В СЛАБОДИСПЕРГИРУЮЩЕМ МЕЛКОМ МОРЕ

В. В. Новотрясов, М. С. Пермяков

Тихоокеанский океанологический институт им. В. И. Ильичева ДВО РАН, 690041 Владивосток, Россия E-mails: vadimnov@poi.dvo.ru, permykov@poi.dvo.ru

Представлены результаты анализа натурных измерений волнового бора на пикноклине мелкого моря, выполненных с помощью вертикально расположенных термисторов. Для гидродинамической интерпретации пространственно-временной структуры бора используется математическая модель слабодисперсного мелкого моря, в которой учитывается влияние кубической нелинейности и низкочастотной дисперсии. Определены предельная амплитуда и минимальная длительность солитонных решений модели. Предложен алгоритм оценки указанных параметров на основе данных измерений пульсаций изотерм, индуцированных бором. Выполнены оценки предельной амплитуды и минимальной длительности уединенных волн на пикноклине в прибрежной зоне Японского моря.

Ключевые слова: мелкое море, натурные измерения, внутренний волновой бор, столообразный солитон.

DOI: 10.15372/PMTF20190307

Введение. Пакеты интенсивных внутренних волн (ВВ) являются особенностью течений шельфовых вод океана. Обладая значительными амплитудами, ВВ оказывают существенное влияние на трансформацию поля скорости звука и его распространение, взмучивание придонных осадков, перестроение придонного рельефа и др. [1–4].

Согласно нелинейной теории [5] амплитуда и длительность солитонов BB ограничены предельными значениями A_* и τ_* соответственно, которые определяются фоновым состоянием мелкого моря, стратификацией плотности и течения. В данной работе выводятся соотношения для этих параметров и предлагается методика их оценки, основанная на данных наблюдений за волнением в шельфовой зоне моря.

1. Теоретические формулы для параметров нелинейных внутренних волн. Схема определения предельной амплитуды и минимальной длительности уединенных внутренних волн (УВВ) формулируется в рамках расширенного за счет введения кубической нелинейности уравнения Кортевега — де Фриза, или так называемого уравнения Гарднера [5]

$$\frac{\partial \zeta}{\partial t} + (c + \mu \zeta + \mu_1 \zeta^2) \frac{\partial \zeta}{\partial x} + \beta \frac{\partial^3 \zeta}{\partial x^3} = 0, \qquad (1)$$

Работа выполнена в рамках госбюджетной темы "Математическое моделирование и анализ динамических процессов в океане" (№ АААА-А17-117030110034-7).

[©] Новотрясов В. В., Пермяков М. С., 2019

где ζ — смещение изопикны, расположенной в невозмущенном состоянии на горизонте максимума частоты плавучести; x, t — координата и время; μ, μ_1, β — коэффициенты квадратичной и кубической нелинейностей и дисперсии соответственно; c — скорость распространения линейных BB. Уравнение (1) имеет стационарные решения в форме УBB, свойства которых известны [5]. В частности, в мелком море постоянной глубины коэффициенты уравнения (1) являются постоянными и определяются неизменной по времени и горизонтальным координатам стратификацией жидкости по плотности и течению. В рамках предлагаемой методики отсутствует необходимость фиксировать какую-либо стратификацию, но для определенности будем полагать $\mu_1 < 0, \mu > 0, \beta > 0$. Для выбранной комбинации знаков коэффициентов стационарное решение уравнения (1) в виде УBB имеет форму

$$\zeta_G(x,t)\big|_{t=t_0} = \frac{K}{1+b \operatorname{ch}\left[(x-x_0)/\Delta_G\right]}.$$
(2)

Здесь $b = \sqrt{1 - (\mu_1/\mu)K}$; $K = 6(\beta/\alpha)/\Delta_G^2$ — параметры, зависящие от произвольного параметра Δ_G , характеризующего ширину УВВ. Другим свободным параметром является фаза УВВ, т. е. ее положение в момент регистрации. Далее при выводе необходимых соотношений фаза полагается равной нулю.

Перечислим характеристики солитонного решения уравнения (1), доступные для натурных измерений с целью оценки предельной амплитуды и минимальной ширины (длительности) солитонного решения: экстремум A_G , или амплитуда УВВ, ширина D на уровне $A_G/2$ и первый момент M_1 , которые задаются соответственно аналитическими выражениями

$$A_G = A_*(1-b), \qquad \frac{1}{2}D = \Delta_G \operatorname{ch}\left(\sqrt{\frac{3+2a_G}{1+a_G}}\right);$$
 (3)

$$\frac{M_1}{A_*} = \Delta_G 4a_G \sqrt{\frac{2-a_G}{a_G}} \operatorname{arth}\left(\sqrt{\frac{a_G}{2-a_G}}\right),\tag{4}$$

где $A_* = -\mu/\mu_1$; $a_G = A_G/A_*$.

Введем интегральный масштаб уединенной волны L_G , определив его как отношение первого момента M_1 функции (2) к ее экстремуму a_G . С учетом аналитического выражения для M_1 для интегрального масштаба L в единицах полуширины Δ_K солитона Кортевега — де Фриза с амплитудой A_* получаем

$$L \equiv \frac{L_G}{\Delta_K} = \frac{4}{a_G} \operatorname{arth}\left(\sqrt{\frac{a_G}{2 - a_G}}\right),\tag{5}$$

где $\Delta_K = \sqrt{6\beta/(\mu/A_*)}; a_G = A_G/A_*.$

Рассмотрим зависимость нормированного интегрального масштаба L солитона от параметра a_G (рис. 1). На рис. 1 видно, что эта зависимость является немонотонной функцией a_G , имеющей минимум при $a_- \approx 0,554A_*$, при этом $L_- \approx 5,3$. При $a_G \to 1$ интегральный масштаб солитона L_G стремится к бесконечности, решение (2) принимает столообразную форму, а его амплитуда A_G стремится к предельному значению $A_* = -\mu/\mu_1$.

Представим алгоритм оценки A_* , используя характеристики (3). Согласно (3) при заданной A_G для оценки предельной амплитуды A_* необходимо задать параметр *b*. Для его определения используем выражение $R = M_2/(A_G M_1)$, где M_2 — второй момент функции (2). Аналитическое представление для *R* имеет вид

$$R = \frac{1}{2(1-b)} \left[1 - \frac{\sqrt{1-b^2/2}}{\operatorname{arth}\left(\sqrt{(1-b)/(1+b)}\right)} \right].$$
 (6)

Рис. 1. Зависимость длины уединенной волны в расширенном уравнении Кортевега — де Фриза от ее амплитуды

При заданном R выражение (6) представляет собой трансцендентное уравнение, решение которого позволяет определить искомый параметр $b_+ = b$ и, соответственно, параметр $A_* = A_G(1-b_+)$ с использованием характеристик солитонного решения уравнения (1), доступных для натурных измерений.

Таким образом, определив левую часть уравнения (6) по данным измерений амплитуды A_s солитоноподобной пульсации, ее первого M_1 и второго M_2 моментов, находим корень b_+ этого уравнения. Полагая $A_G \approx A_s$, для предельной амплитуды солитонов Гарднера получаем $A_* = A_s(1 - b_+)$.

Согласно рис. 1 солитон с минимальной шириной имеет амплитуду $A_{-} = 0,554A_{*}$. Рассчитаем соответствующую этой амплитуде ширину солитона, выразив ее в единицах измеряемого параметра D. Для УВВ с амплитудой A_{-} интегральный масштаб (интегральный масштаб солитона Гарднера) приблизительно равен $L_{-} \approx 0,53 \Delta_{K}$. Учитывая зависимость Δ_{K} от параметров D и $a_{G} = A_{s}/A_{*}$

$$\Delta_K = \frac{1}{2} \frac{D\sqrt{a_G(a_G + 2)}}{\operatorname{arch}\left(2 + 1/(1 - a_G)\right)},\tag{7}$$

представим интегральный масштаб солитона с минимальной амплитудой $a_{-} = A_{-}/A_{*}$ в единицах ширины D. Получаем

$$L_{-} \approx \frac{2,65D\sqrt{a_G(a_G+2)}}{\operatorname{arch}\left((3-2a_G)/(1-a_G)\right)}.$$
(8)

Таким образом, в соответствии с (8) минимальный интегральный масштаб солитона Гарднера L_{-} зависит от амплитуды УВВ a_{G} , нормированной на A_{*} , и ширины D (длительности τ) УВВ на высоте $A_{s}/2$, доступных для измерений в натурных условиях.

2. Описание методики. Как показано выше, уединенные решения расширенного уравнения Кортевега — де Фриза (солитоны Гарднера) характеризуются двумя особенностями: существованием солитонов с плоскими вершинами, ширина которых неограниченно увеличивается при $A_G \rightarrow A_*$, и наличием солитонов с минимальной длительностью $\tau_- = L_-/V_G$ и соответствующей этим солитонам амплитудой $A_- = 0.554A_*$.

Для определения предельной амплитуды A_* и минимальной длительности τ_- используем массив значений глубины залегания изотермы (далее волнограмма УВВ) $\zeta_i = \zeta(t_i)$

Рис. 2. Волнограмма пакета уединенных внутренних волн с минимальной длительностью (I, II) и волн, близких по форме к солитонам столообразной формы (1-4)

в дискретные моменты времени t_i . Глубина залегания этой изотермы в невозмущенном состоянии соответствует максимуму частоты плавучести. На волнограмме выделяются солитоноподобные возвышения. Вблизи максимальных значений ζ_i с помощью параболической аппроксимации уточняются положение максимумов и соответствующие этим возвышениям амплитуды A_s . Для определения длительности возвышения с центром, расположенным в точке t_0 , проводятся оценки положений минимумов слева и справа от t_0 . Таким образом определяются все точки (t_i, ζ_i) функции, формирующей УВВ. Полученные значения используются для численных оценок ее экстремума A_G , первого M_1 и второго M_2 моментов, длительности на высоте $A_G/2$, а также отношения $R = (M_2/M_1)/A_G$.

Проведем оценку предельной амплитуды A_* и минимальной длительности τ_- УВВ в прибрежной зоне Японского моря на полигоне Тихоокеанского океанологического института ДВО РАН осенью 2012 г. с характерным для этого сезона положением термоклина на глубине $z \approx -20$ м. Постановка эксперимента в это время года и часть полученных результатов приведены в работах [6–9]. Рассмотрим индуцированные пакетом УВВ вариации температуры, зарегистрированные гидрографическим буем, установленным на изобате 38 м. На рис. 2 представлен фрагмент изотермы 8 °С с начальной глубиной залегания $z \approx -20$ м, т. е. волнограмма волнового пакета, зарегистрированного 19 октября 2012 г. (I, II — пульсации, близкие по форме к решениям уравнения (1) с минимальной длительностью, 1-4 — пульсации, близкие по форме к солитонам с плоскими вершинами). Результаты анализа приведены в таблице.

Номер солитоноподобной пульсации	<i>А_s</i> , м	M_1 , м·с	M_2 , м·с ²	R	b	А*, м	A_s/A_*
1	11,5	$1,6\cdot 10^3$	$4,1 \cdot 10^{5}$	0,74	0,12	13,0	0,9
2	10,3	$1,5 \cdot 10^{3}$	$3,5 \cdot 10^{5}$	0,75	0,17	12,4	$0,\!8$
3	10,1	$1,2 \cdot 10^{3}$	$2,6 \cdot 10^{5}$	0,73	0,17	12,2	$0,\!8$
4	9,4	$9,6\cdot 10^2$	$1,9\cdot 10^5$	0,71	0,24	12,4	$0,\!8$
Ι	7,3	$9,1 \cdot 10^{2}$	$1,4 \cdot 10^{5}$	$0,\!69$	0,38	11,8	$0,\!6$
II	7,1	$8,\!6\cdot 10^{2}$	$1,3 \cdot 10^{5}$	$0,\!69$	0,43	12,4	$0,\!6$

Параметры солитонов внутренних волн, зарегистрированных в прибрежной зоне Японского моря 19 октября 2012 г.

Примечание. *b* — рассчитываемый параметр.

В расчетах установлено, что среднее значение предельной амплитуды для представленных в таблице УВВ составило $A_* \approx 12,5$ м. Расчетное значение амплитуды УВВ с минимальной (приблизительно 105 с) длительностью равно $A_- \approx 7$ м. Согласно [5] солитоны с амплитудами, близкими к амплитуде 7 м, будут иметь длительность τ (ширину D), близкую к минимальной длительности или ширине. Из таблицы следует, что солитоны I, II имеют амплитуды, близкие к A_- , т. е. эти солитоны будут иметь длительности, близкие к минимальной длительности солитонов, наблюдавшихся на полигоне в 2012 г. Эти длительности на высоте A/2 составили $\tau_{\rm I} = 100$ с и $\tau_{\rm II} = 95$ с, а их ширины при скорости $V \approx 0,38$ м/с на той же высоте составили $D_{\rm I} \approx 38$ м и $D_{\rm II} \approx 36$ м.

Согласно данным для УВВ 1–4 (см. таблицу) параметр *b* изменяется в диапазоне 0,1 ÷ 0,2, а отношение их амплитуд к предельной амплитуде $A_s/A_* > 0,8$, что позволяет классифицировать их как УВВ, близкие к солитонам Гарднера столообразной формы. Для УВВ I, II параметр $b \approx 0,4$, а отношение их амплитуд к предельной амплитуде составляет $A_s/A_* \approx 0,6$. Эти УВВ следует классифицировать как УВВ, близкие к солитонам Гарднера с минимальными длительностями (ширинами), сформировавшимся на гидрологическом фоне в прибрежной зоне Японского моря осенью 2012 г.

Заключение. Предложена методика определения предельной амплитуды и минимальной длительности (ширины) солитоноподобных внутренних волн над морским шельфом по данным измерений смещений изотерм в зоне его пикноклина (волнограмм УВВ). Методика основана на численных оценках параметров и интегральных характеристик УВВ: амплитуды, массы (первого момента M_1) и энергии (второго момента M_2) солитоноподобных пульсаций по значениям дискретных отчетов их волнограмм. В предположении, что формы наблюдаемых УВВ могут быть аппроксимированы солитонными решениями уравнения Кортевега — де Фриза и (или) Гарднера, определяются параметры этих солитонов и на основе этих параметров дается оценка предельной амплитуды и минимальной ширины солитонов Гарднера на заданном гидрологическом фоне. Методика протестирована на данных натурных исследований солитоноподобных внутренних волн, зарегистрированных в прибрежной зоне Японского моря осенью 2012 г. Показано, что предельная амплитуда нелинейных внутренних волн, по данным зарегистрированных УВВ, составляет приблизительно 12,5 м (при глубине порядка 40 м), а минимальная ширина приблизительно 40 м. Отношение амплитуд зарегистрированных УВВ к предельной амплитуде солитонов Гарднера превышает 0,8, что позволяет классифицировать эти УВВ как солитоны, близкие к плосковершинным солитонам расширенного уравнения Кортевега — де Фриза.

ЛИТЕРАТУРА

- Helfrich K. R., Melville W. K. Long nonlinear internal waves // Annual Rev. Fluid Mech. 2006. V. 38. P. 395–425.
- 2. Кукарин В. Ф., Ляпидевский В. Ю., Навроцкий В. В., Храпченков Ф. Ф. Эволюция внутренних волн большой амплитуды в шельфовой зоне моря // Фундам. и прикл. гидрофизика. 2013. Т. 6, № 2. С. 35–45.
- 3. Apel J. R., Ostrovsky L. A., Stepanyants Y. A., Lynch J. F. Internal solitons in the ocean and their effect on underwater sound // J. Acoust. Soc. Amer. 2007. V. 121, N 2. P. 695–722.
- Wang B., Bogucki D., Redekopp L. Internal solitary waves in a structured thermocline with implications for resuspension and the formation of thin particle laden layers // J. Geophys. Res. 2001. V. 106, N C5. P. 9565–9585.
- 5. Grimshaw R., Pelinovsky D., Pelinovsky E., Slunyaev A. Generation of large-amplitude solitons in the extended Korteweg de Vries equation // Chaos. 2002. V. 12. P. 1070–1076.

- 6. **Леонтьев А. П., Ярощук И. О., Смирнов С. В. и др.** Пространственно распределенный измерительный комплекс для мониторинга гидрофизических процессов на океаническом шельфе // Приборы и техника эксперимента. 2017. № 1. С. 128–135.
- Novotryasov V. V., Stepanov D. V., Yaroshchuk I. O. Observations of internal undular bores on the Japan / East sea shelf — coastal region // Ocean Dynamics. 2016. V. 66, N 1. P. 19–25.
- 8. Ляпидевский В. Ю., Новотрясов В. В., Храпченков Ф. Ф., Ярощук И. О. Внутренний волновой бор в шельфовой зоне моря // ПМТФ. 2017. Т. 58, № 5. С. 60–71.
- Долгих Г. И., Новотрясов В. В., Ярощук И. О. и др. Интенсивные волновые боры на осеннем пикноклине шельфовых вод залива Петра Великого Японского моря // Докл. АН. 2018. Т. 479, № 2. С. 200–205.
- 10. Kurkina O., Rouvinskaya E., Talipova T., et al. Nonlinear disintegration of sine wave in the framework of the Gardner equation // Physica D. 2016. V. 333. P. 222–234.

Поступила в редакцию 21/V 2018 г., после доработки — 12/X 2018 г. Принята к публикации 24/XII 2018 г.