ТРАНСФОРМАЦИЯ УДАРНЫХ ВОЛН НА ГРАНИЦЕ РАЗДЕЛА ПУЗЫРЬКОВЫХ СРЕД

А. И. Сычев

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск, sychev@hydro.nsc.ru

Экспериментально исследован процесс перехода ударных волн из пузырьковой среды в жидкость или в пузырьковую среду с другими свойствами. Получены данные о структуре, скорости распространения и давлении на границе раздела среды ударной волны, прошедшей и отражённой волны. Проведено сопоставление экспериментальных данных и результатов расчета.

Ключевые слова: пузырьковая среда, жидкость, газ, пузырьки газа, ударная волна, прохождение, отражение, трансформация.

Экспериментальному и теоретическому исследованию ударных волн в пузырьковых средах посвящено значительное число оригинальных работ. В [1, 2] изучено распространение звуковых волн в пузырьковых средах. Структура и свойства волновых возмущений различной амплитуды и длительности в пузырьковых средах исследована в [3-13]. В [14, 15] изучены процессы взаимодействия пузырьков газа с ударными волнами. Отражение ударных волн в пузырьковых средах от твердой стенки исследовано в [16-22]. В [23] проведено исследование перехода ударных волн через границу раздела пузырьковых сред и жидкости. Процессы трансформации ударных волн при взаимодействии с пузырьковыми завесами в жидкости изучены в [16, 24-26]. Результаты работ, посвященных исследованию волновых процессов в пузырьковых средах, обобщены в монографиях [27-30].

Ударная волна — пример нелинейной волны. При своем распространении ударная волна оказывает воздействие на среду. В свою очередь, процессы, протекающие при этом в среде, определяют структуру и свойства самой волны. При изменении параметров среды меняются и характеристики ударной волны.

Ударные волны в пузырьковых средах, распространение которых является результатом взаимодействия жидкого и газового компонентов, трансформируются при изменении параметров пузырьковой среды.

Цель настоящей работы — изучение процесса перехода сильных ударных волн из пузырьковой среды в жидкость или в пузырьковую среду с другими свойствами.

Экспериментальные исследования ударных волн в пузырьковых средах и в жидкостях проведены в вертикальной ударной трубе с внутренним диаметром 40 мм и высотой 4.3 м, состоящей из секций высокого и низкого давления с разрывной диафрагмой между ними. Секцию низкого давления заполняли жидкостью, в которой пузырьки диаметром 2.5 мм генерировались при прохождении газа через две системы капилляров, вводимых в жидкость перпендикулярно стенке ударной трубы и через ее торец. Объемную концентрацию газовой фазы пузырьковых сред изменили в диапазоне 0.5 ≤ ρ0 ≤ 6 %. Высота столба пузырьковой среды составляла 3.55 м. Давление на поверхности пузырьковой среды было равно атмосферному (ρ0 = 0.1 МПа). Опыты проводили при температуре в помещении T0 = 288 К.

Ударные волны в пузырьковой среде генерировали сжиганием апетиленоксиловой стехиометрической смеси (C2H2 + 2.5O2) в секции высокого давления ударной трубы [31]. Амплитуду (давление) ударных волн варьировали изменениям начального давления газовой смеси C2H2 + 2.5O2. При этом давление ударных волн соответствует давлению, которое развивается над поверхностью пузырьковой среды при сгорании газа в замкнутом объеме секции высокого давления ударной трубы [32].

Параметры ударных волн измеряли установленными по длине ударной трубы пьезоэлектрическими датчиками давления, сигналы которых регистрировали двумя цифровыми осциллографами С9-16 (постоянная времени датчиков давления составляла 8.4 мс). Датчики

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 01-03-32561).
Рис. 1. Оциллиограммы давления падающей (1), просвещенной через границу разделя сред (2), отраженной от границы раздела сред (II) и отраженной от торца ударной трубы (2) ударных волн:

а = 0.25, газ — N₂; α, β — β₀ = 4 %; в, г — β₁ = 4 % и β₂ = 1 %; д, е — β₁ = 4 % и β₂ = 0; расстояние от границы раздела сред до датчиков, м: I — (0.665), II — (0.675), III = 0.680

tарили ударными и детонационными волнами в газах.

Исследованы следующие системы: «пузырьковая среда», «пузырьковая среда I — пузырьковая среда II», «пузырьковая среда — жидкость». В качестве жидкостей использованы водоглициериновые растворы с объемной концентрацией глицерина α = 0, 0,25 или 0,5 (вязкость растворов 1,01·10⁻³, 2,27·10⁻³ и 6,84·10⁻³ Па·с, скорость звука в жидкостях, определенная по скорости распространения слабых ударных волн, 1,380 ± 50, 1,470 ± 50 и 1,580 ± 50 м/с соответственно); пузырьки содержали аргон Ar или азот N₂. Системы «пузырьковая среда I — пузырьковая среда II» характеризуются объемной концентрацией газовой фазы β₁ и β₂ соответственно; в системах «пузырьковая среда — жидкость» β₂ = 0; в пузырьковых средах β₁ = β₂ = β₀.

Генерируемые в пузырьковых средах ударные волны являлись стационарными (рис. 1,а,б). Сильные ударные волны в пузырьковых средах имеют пульсационную структуру (рис. 1,а,б): на фронте и за фронтом ударной волны регистрируются интенсивные пульсации давления: через 200 ÷ 300 мкс пульсации заканчиваются и давление выходит на почти постоянный уровень. Пульсации давления ударной волны в пузырьковых средах являются следствием осцилляций пузырьков газа. (В ударных волнах, распространяющихся в жидкостях, пульсации давления отсутствуют.) Статистический характер пульсаций давления ударной волны обусловлен случайным распределением пузырьков газа в жидкости.

На рис. 1,в—г представлены оциллограммы, иллюстрирующие процесс перехода ударной волны через границу раздела «пузырьковая среда I — пузырьковая среда II» и «пузырь-
ковая среда — жидкость». При переходе через границу раздела сред ударная волна трансформируется: образуется пронесшая ударная волна, распространяющаяся во второй среде — в пузырьковой среде II (рис. 1, e, c) или в жидкости (рис. 1, d, e), и возникает отраженная от границы раздела сред ударная волна, распространяющаяся в пузырьковой среде I (рис. 1, e—c). При этом давление пронесшей и отраженной от границы раздела сред ударных волн возрастает с увеличением разности концентраций газовой фазы сред. Так, давление пронесшей ударной волны при переходе волн из пузырьковой среды (β1 = 4%) в жидкость (β2 = 0) увеличивалось примерно в три раза; при этом давление отраженной от границы раздела сред ударной волны также примерно втрое больше давления падающей ударной волны. Интенсивность пульсаций давления в пронесшей ударной волне, распространяющейся в жидкости (рис. 1, e), существенно меньше, чем в пронесшей волне, распространяющейся в пузырьковой среде (рис. 1, c).

Пронесшая ударная волна, достигая торца ударной трубы, отражается. Распространяясь далее по пузырьковой среде II, отраженная от твердой преграды ударная волна проходит через границу раздела сред и переходит в пузырьковую среду I. Скорость распространения ударных волн в пузырьковых средах определяется амплитудой волны и параметрами пузырьковой среды. Ударные волны в жидкостях (как пронесшая, так и отраженная от торца ударной трубы) распространяются со скоростью звука в жидкостях.

На рис. 2 представлены результаты измерений скорости распространения ударных волн в различных пузырьковых средах (каждая точка на графике — среднее данных 3÷5 опытов). Измерения проводили с помощью датчиков давления на двух участках ударной трубы с базами 0.595 и 0.470 м (расстояние от поверхности пузырьковой среды до середины базы L равно 2.72 и 3.25 м соответственно). Скорость ударных волн на данных расстояниях от поверхности пузырьковой среды имеет практически совпадающие значения.

Скорость распространения ударных волн D1 уменьшается с повышением концентрации газовой фазы пузырьковой среды β0 и возрастает при увеличении амплитуды ударной волны p1 (рис. 2). Влияние свойств газов, содержащихся в пузырьках, на характеристики ударных волн слабое: скорости распространения ударных волн в системах с пузырьками одного и двухатомных газов имеют близкие значения.

Совокупное влияние свойств жидкого компонента пузырьковых сред на скорость распространения ударных волн незначительно (см. рис. 2).

Рассмотрим взаимодействие ударной волны с границей раздела пузырьковых сред. Введем лабораторную систему отсчета, ось которой направлена слева направо. Пусть стационарная ударная волна (падающая волна) распространяется со скоростью D1 в неподвижной пузырьковой среде I справа налево. Запишем уравнения сохранения массы и импульса, связывающие параметры пузырьковой среды по обе стороны ударного перехода:

\[
\rho_0 D_1 = \rho_1 (D_1 - u_1),
\]

\[
p_0 + \rho_0 D_1^2 = p_1 + \rho_1 (D_1 - u_1)^2.
\]

Здесь \(\rho_0\), \(\rho_1\) и \(p_1\) — давление и плотность пузырьковой среды перед и за фронтом ударной волны соответственно, \(u_1\) — скорость потока среды за ударной волной. Таким образом,
ударная волна переводит пузырьковую среду I из состояния с параметрами \(p_0, \rho_{0}, v_0 \) в состояние с параметрами \(p_1, \rho_{1}, u_1 \) (здесь \(u_0 = 0 \) — скорость потока среды перед фронтом ударной волны).

Пузырьковая среда с параметрами \(p_1 \) и \(\rho_{1} \) натекает со скоростью \(u_1 \) на границу раздела пузырьковых сред I и II. В результате взаимодействия потока среды с границей раздела сред образуются две волны: проходящая через границу раздела сред ударная волна, распространяющаяся в среде II, и отраженная от границы раздела сред волна, распространяющаяся в среде I (отраженная волна является ударной в случае, когда акустический импеданс среды II больше акустического импеданса среды I, или является волной разрежения — в противном случае). Таким образом, падающая ударная волна, взаимодействуя с границей раздела пузырьковых сред, распадается на прошедшую и отраженную волны.

Имеем задачу о распаде произвольного разрыва на границе раздела пузырьковых сред. Запишем уравнения сохранения массы и импульса, связывающие параметры пузырьковой среды по обе стороны фронта прошедшей ударной волны, распространяющейся в неподвижной пузырьковой среде II со скоростью \(D_{21} \) справа налево:

\[
\rho_{20}D_{21} = \rho_{21}(D_{21} - u_{21}),
\]

\[
p_0 + \rho_{20}D_{21}^2 = p_{21} + \rho_{21}(D_{21} - u_{21})^2.
\]

Здесь \(p_0, \rho_{0} \) и \(p_{21}, \rho_{21} \) — давление и плотность пузырьковой среды перед и за фронтом прошедшей ударной волной соответственно, \(u_{21} \) — скорость потока среды за прошедшей ударной волной. Таким образом, прошедшая ударная волна переходит пузырьковую среду II из состояния с параметрами \(\rho_{20}, \rho_{20}, u_{20} \) в состояние с параметрами \(p_{21}, \rho_{21}, u_{21} \) (здесь \(u_{20} = 0 \) — скорость потока среды перед фронтом прошедшей ударной волны).

Запишем также уравнения сохранения массы и импульса, связывающие параметры пузырьковой среды по обе стороны фронта отраженной волны, распространяющейся в сжатой падающей ударной волной пузырьковой среде I со скоростью \(D_{11} \) слева направо:

\[
\rho_{1}(D_{11} + u_{1}) = \rho_{11}(D_{11} + u_{11}),
\]

\[
p_1 + \rho_{1}(D_{11} + u_{1})^2 = p_{11} + \rho_{11}(D_{11} + u_{11})^2.
\]

Здесь \(p_1, \rho_{1} \) и \(p_{11}, \rho_{11} \) — давление и плотность пузырьковой среды перед и за фронтом отраженной волны соответственно, \(u_{11} \) — скорость потока среды за отраженной волной. Таким образом, отраженная волна переводит пузырьковую среду I из состояния с параметрами \(p_1, \rho_{1}, u_1 \) в состояние с параметрами \(p_{11}, \rho_{11}, u_{11} \).

При распаде произвольного разрыва на контактной границе (на границе раздела пузырьковых сред) выполняются соотношения

\[
u_{11} = u_{21} = u_k \equiv u,
\]

\[
p_{11} = p_{21} \equiv p.
\]

Здесь \(u_k \) — скорость смещения контактной границы.

Для получения расчетных формул из системы уравнений (1)–(6) при условиях (7) и (8) необходимо приведение уравнения состояния пузырьковых сред.

Пренебрегая изменением температуры жидкости в процессе ударного перехода, сжимаемость жидкого компонента пузырьковых сред учтена в акустическом приближении. Имеем

\[
p_1 - p_0 = (c_{1k}^2)(\rho_{1}^k - \rho_{10}^k),
\]

где \(c_{1k}^2 \) — скорость звука в жидкости, содержащейся в среде I, \(\rho_{10}^k \) и \(\rho_{1}^k \) — плотность жидкости перед и за фронтом падающей ударной волны соответственно;

\[
p - p_0 = (c_{2k}^2)(\rho_{21}^k - \rho_{20}^k),
\]

где \(c_{2k}^2 \) — скорость звука в жидкости, содержащейся в среде II, \(\rho_{20}^k \) и \(\rho_{21}^k \) — плотность жидкости перед и за фронтом прошедшей волны соответственно;

\[
p - p_1 = (c_{1k}^2)(\rho_{11}^k - \rho_{1}^k),
\]

где \(\rho_{11}^k \) и \(\rho_{1}^k \) — плотность жидкости перед и за фронтом отраженной волны соответственно.

Сжимаемость газового компонента пузырьков сред опишем в общем случае: полагаем, что газ совершает политропный процесс. Имеем

\[
p_1/p_0 = (\rho_{1}^{\text{gas}}/\rho_{0}^{\text{gas}})^n,
\]

где \(\rho_{0}^{\text{gas}} \) и \(\rho_{1}^{\text{gas}} \) — плотность газа в пузырьках перед и за фронтом падающей ударной волны соответственно, \(n \) — показатель политропы (\(1 \leq n < \gamma \), где \(\gamma \) — показатель адабаты);
\[\frac{p}{p_0} = \left(\frac{\rho_2^{\text{ра}}}{\rho_0^{\text{ра}}} \right)^n, \]

где \(\rho_0^{\text{ра}} \) и \(\rho_2^{\text{ра}} \) — плотность газа в пузырьках перед и за фронтом пропеллери волны соответственно;

\[\frac{p}{p_1} = \left(\frac{\rho_1^{\text{ра}}}{\rho_1^{\text{ра}}} \right)^n, \]

где \(\rho_1^{\text{ра}} \) и \(\rho_2^{\text{ра}} \) — плотность газа в пузырьках перед и за фронтом отраженной волны соответственно.

Используем соотношения, связывающие плотность пузырьковой среды с параметрами жидкого и газового компонентов:

\[\frac{1}{\rho_{10}} = \frac{1 - \alpha_{10}}{\rho_0^{\text{ка}}} + \frac{\alpha_{10}}{\rho_0^{\text{ра}}} \approx \frac{1}{\rho_0^{\text{ка}}} + \alpha_{10} \]

или

\[\rho_{10} = (1 - \beta_1)\rho_0^{\text{ка}} + \beta_1\rho_0^{\text{ра}} \approx (1 - \beta_1)\rho_0^{\text{ка}}, \]

где \(\alpha_{10} \) и \(\beta_1 \) — массовая и объемная концентрация газовой фазы пузырьковой среды I соответственно, \(\alpha_{10} = \beta_1 \rho_0^{\text{ра}} / \rho_{10} \);

\[\frac{1}{\rho_{20}} = \frac{1 - \alpha_{20}}{\rho_0^{\text{ка}}} + \frac{\alpha_{20}}{\rho_0^{\text{ра}}} \approx \frac{1}{\rho_0^{\text{ка}}} + \alpha_{20} \]

или

\[\rho_{20} = (1 - \beta_2)\rho_0^{\text{ка}} + \beta_2\rho_0^{\text{ра}} \approx (1 - \beta_2)\rho_0^{\text{ка}}, \]

где \(\alpha_{20} \) и \(\beta_2 \) — массовая и объемная концентрация газовой фазы пузырьковой среды II соответственно, \(\alpha_{20} = \beta_2 \rho_0^{\text{ра}} / \rho_{20} \).

Для пузырьковых сред за падающей, прошедшей и отраженной волнами соотношения аналогичны.

Получаем расчетные формулы:

\[\left(\frac{p}{p_0} - \frac{p_1}{p_0} \right) \left[1 + \frac{\beta_1}{1 - \beta_1} (c_1^2) \rho_0^{\text{ра}} \times \right. \]

\[\left. \times \left(\frac{p_0/p_1}{p/p_0} \right)^{1/2} \right\] \[\times \left(\frac{p_0/p_1}{p/p_0 - p_1/p_0} \right)^{1/2} \left(\frac{p_0 - 1}{p_0 - 1} \right) \rho_0^{\text{ра}} \frac{c_0^{\text{ра}}}{\rho_{20}^{\text{ра}}} \times \]

\[\times \left[1 + \frac{\beta_2}{1 - \beta_2} (c_2^2) \rho_0^{\text{ра}} \frac{1 - (p_0/p_1)^{1/2}}{p_0/p_1 - 1} \right]^{1/2} = \]

\[= \left(\frac{p_1}{p_0} - 1 \right) \left[1 + \frac{\beta_1}{1 - \beta_1} (c_1^2) \rho_0^{\text{ра}} \times \right. \]

\[\times \left(\frac{p_0/p_1}{p/p_0 - p_1/p_0} \right)^{1/2} \right\] \[\times \left(\frac{p_0/p_1}{p/p_0 - p_1/p_0 - 1} \right)^{1/2} \left(\frac{p_0 - 1}{p_0 - 1} \right) \rho_0^{\text{ра}} \frac{c_0^{\text{ра}}}{\rho_{20}^{\text{ра}}} \times \]

\[\times \left[1 + \frac{\beta_2}{1 - \beta_2} (c_2^2) \rho_0^{\text{ра}} \frac{1 - (p_0/p_1)^{1/2}}{p_0/p_1 - 1} \right]^{1/2} = \]

— давление прошедшей и отраженной волн в зависимости от давления падающей ударной волны;

\[D_1 = \frac{c_1^2}{1 - \beta_1} \left[1 + \frac{\beta_1}{1 - \beta_1} (c_1^2) \rho_0^{\text{ра}} \times \right. \]

\[\times \left(\frac{p_0/p_1}{p/p_0 - p_1/p_0 - 1} \right)^{1/2} \]

(9)

— скорость распространения падающей на границу раздела сред ударной волны;

\[D_{11} = \frac{c_2^2}{1 - \beta_2} \left[1 + \frac{\beta_2}{1 - \beta_2} (c_2^2) \rho_0^{\text{ра}} \times \right. \]

\[\times \left(\frac{p_0/p_1}{p/p_0 - p_1/p_0 - 1} \right)^{1/2} \]

(10)

— скорость распространения прошедшей через границу раздела сред ударной волны;

\[u_1 = \frac{(p_1/p_0 - 1)}{c_1 \rho_1^{\text{ра}}/p_0} \left[1 + \frac{\beta_1}{1 - \beta_1} (c_1^2) \rho_0^{\text{ра}} \times \right. \]

\[\times \left(\frac{p_0/p_1}{p/p_0 - p_1/p_0 - 1} \right)^{1/2} \]

(13)

— скорость потока за фронтом падающей ударной волны;

\[u = \frac{(p/p_0 - 1)}{c_2 \rho_2^{\text{ра}}/p_0} \left[1 + \frac{\beta_2}{1 - \beta_2} (c_2^2) \rho_0^{\text{ра}} \times \right. \]

\[\times \left(\frac{p_0/p_1}{p/p_0 - p_1/p_0 - 1} \right)^{1/2} \]

(14)

— скорость потока за прошедшей и отраженной волнойами.
Анализ результатов расчета параметров падающих ударных волн для \(\rho_0^\infty = \rho_0^{\infty} \equiv \rho_0 \) и \(\varepsilon_0^\infty = \varepsilon_0^{\infty} \equiv \varepsilon_0 \), проведенного для двух предельных случаев при \(n = 1 \) (изотермический процесс; модель «теплового равновесия пузырьков газа и жидкости») и при \(n = \gamma \) (изоэнтропийный процесс; модель «теплоизолированных пузырьков газа»), показывает, что для сильных ударных волн (\(\Delta p/p_0 \gg 1, \Delta p = p_1 - p_0 \)) рассмотренные модели эквивалентны: в условиях настоящего эксперимента (см. рис. 2) относительное отличие результатов расчета по обеим моделям не превышает 4 %. Для ударных волн умеренной амплитуды (\(\Delta p/p_0 \approx 1 \)) и для слабых ударных волн (\(\Delta p/p_0 \ll 1 \)) относительное отличие результатов расчета по обеим моделям достигает 10 и 20 % соответственно и выбор расчетной модели определяется процессами тепловой релаксации пузырьков газа в ударной волне [16, 33, 28, 29].

Результаты расчета скорости распространения падающих на границу раздела сред ударных волн представлены на рис. 2 (использована модель «теплового равновесия», в рамках которой получены более простые расчетные формы). Результаты расчета согласуются с экспериментальными данными.

Отметим, что формула (10) для расчета скорости распространения ударных волн в пузырьковых средах в предельных случаях (при \(n = 1 \) и при \(n = \gamma \)) находится в соответствии с формулами, полученными в [7, 29] и [4] соответственно.

Результаты расчета скорости распространения волн, образующихся в результате трансформации падающей ударной волны на границе раздела сред, также находятся в согласии с экспериментальными данными. Так, например, для случая, представленного на рис. 1,6 (скорость падающей ударной волны \(D_1 = 223 \text{ м}/\text{с (эксперимент)} \) и \(239 \text{ м}/\text{с (расчет)} \)), скорость отраженной от границы раздела среды волны \(D_{11} = 1017 \text{ м}/\text{с (эксперимент)} \) и \(1088 \text{ м}/\text{с (расчет)} \), скорость прошедшей волны \(D_{21} = 616 \text{ м}/\text{с (расчет)} \); при этом скорость движения среды за фронтом падающей ударной волны \(u_1 = 9.4 \text{ м}/\text{с, массовая скорость за фронтом падающей и отраженной волны (скорость движения границы раздела сред) } u = 7.3 \text{ м}/\text{с (расчет).} \)

На рис. 3 представлены данные измерений давления отраженной от границы раздела сред и прошедшей через границу раздела сред волн (каждая точка на графике — среднее значений \(3 \pm 5 \text{ опытов} \)). Давления отраженной и прошедшей волн близки и возрастают с увеличением разности концентраций газовой фазы сред. Расчетная зависимость удовлетворительно описывает экспериментальные результаты.

Заметим, что в экспериментах [23] прошедшая и отраженная ударные волны имели различные амплитуды. Несовпадение давлений волн на границе раздела сред обусловлено, по всей видимости, нестационарностью падающей ударной волны. Отметим также, что данные опытных работ [23] и настоящих экспериментов получены при различных параметрах ударных волн и пузырьковых сред, что исключает возможность прямого сопоставления результатов. Зависимость отношения давлений прошедшей и падающей волны от отношения концентраций газовой фазы сред, полученные в [23] при решении задачи о распаде произвольного разрыва (численный расчет), и расчетная зависимость, приведенная на рис. 3, имеют качественное совпадение.

Анализ результатов расчета показывает, что при переходе ударной волны из пузырьковой среды в жидкость давления прошедшей и отраженной волн возрастают с увеличением амплитуды падающей ударной волны и при повышении концентрации газовой фазы пузырьковой среды. При переходе ударной волны из жидкости в пузырьковую среду давления прошедшей и отраженной волн возрастают с увеличением амплитуды падающей волны и уменьшаются при повышении концентрации
газовой фазы пузырьковой среды.

Скорость волны, обозначаемая при отражении ударной волны от границы раздела "пузырьковая среда — жидкость", и скорость прошедшей волны, обозначаемая при падении ударной волны на границу раздела "жидкость — пузырьковая среда", возрастают с увеличением амплитуды падающей ударной волны и уменьшаются при повышении концентрации газовой фазы пузырьковой среды.

Скорость движения среды за фронтом падающей ударной волны возрастает с увеличением амплитуды волны, и повышении концентрации газовой фазы пузырьковой среды. При падении ударной волны фиксированной амплитуды на границу раздела пузырьковых сред массовая скорость за фронтом прошедшей и отраженной волн (скорость движения границы раздела сред) зависит от соотношения между концентрациями газовой фазы пузырьковых сред и увеличивается при повышении концентрации газовой фазы как среды I, так и среды II.

В заключение заметим, что помимо случая взаимодействия ударной волны с границей раздела пузырьковых сред формулы (9)–(14) описываются также трансформацией ударной волны на границе раздела различным
• при $\beta_1 = 0$ — переход ударной волны из жидкости в пузырьковую среду;
• при $\beta_2 = 0$ — переход ударной волны из пузырьковой среды в жидкость;
• при $\beta_1 = 0$ и $\beta_2 = 0$ — переход ударной волны из жидкости с параметрами ρ_m, c_m в жидкость с параметрами ρ_m^{*}, c_m^{*};
• при $\beta_2 = 0$ и $\rho_2^{*} \equiv \rho_m$, $c_2^{*} \equiv c_m$ — процесс отражения ударной волны, распространяющейся в пузырьковой среде или в жидкости (при $\beta_1 = 0$), от твердой преграды (при $\rho_2^{*}c_2^{*} \ll \rho_m c_m$ имеем случай отражения ударной волны от абсолютно жесткой преграды) (где ρ_m и c_m — плотность и скорость звука в твердом теле соответственно).

Изученный процесс перехода ударной волны из пузырьковой среды в жидкость или в пузырьковую среду с другим свойствами может быть использован как способ создания ударных волн с заданными характеристиками в жидкостях и пузырьковых средах.

Литература

4. Ляхов Г. М. Ударные волны в многокомпонентных средах // Изв. АН СССР. ОТН. Механика и машиностроение. 1959. № 1. С. 46–49.
17. Накоряков В. Е., Покусаев Б. Г., Шрейбер И. Р. и др. Экспериментальное исследование ударных волн в жидкости с пузырьками газа // Волновые процессы в двухфазных средах. Новосибирск, 1975.

22. Донцов В. Е., Покусаев Б. Г. Отражение ударной волны от твердой стенки в системе жидкости с твердыми частицами и газовыми пузырьками // Акуст. журнал. 1999. Т. 45. № 2. С. 215–222.

27. Накоряков В. Е., Покусаев Б. Г., Шрейбер И. Р. Распространение волн в газо-жидкостных средах. Новосибирск: Ин-т теплофизики СО АН СССР, 1983.

