Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.145.79.214
    [SESS_TIME] => 1735851060
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 5fd118f6b6f63fd2e40cb0aa91b799fd
    [UNIQUE_KEY] => 81334bcb1ce82fc5fd2963692e20843a
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Прикладная механика и техническая физика

1999 год, номер 2

Неустойчивость состояний покоя идеальной проводящей среды в магнитном поле.

Ю. Г. Губарев, С. С. Ковылина
Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск
*Новосибирский государственный университет, 630090 Новосибирск

Аннотация

Изучается задача линейной устойчивости состояний покоя идеальной сжимаемой среды с бесконечной проводимостью в магнитном поле. Прямым методом Ляпунова доказано, что эти состояния покоя неустойчивы по отношению к малым пространственным возмущениям, уменьшающим потенциальную энергию (в данном случае сумму внутренней энергии среды и энергии магнитного поля). Выведены двусторонние экспоненциальные оценки роста возмущений, причем показатели экспонент, содержащихся в этих оценках, вычисляются по параметрам состояний покоя и начальным данным для возмущений. Выделен класс наиболее быстрорастущих возмущений и найдена точная формула для определения скорости их нарастания. Построен пример состояний покоя и начальных возмущений, линейная стадия эволюции которых во времени протекает в соответствии с полученными оценками. С математической точки зрения результаты настоящей работы имеют априорный характер, поскольку теоремы существования решений исследуемых задач не доказаны.