Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.144.45.187
    [SESS_TIME] => 1732192948
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => b3a0b2297140b71a6f35c96bd19a3402
    [UNIQUE_KEY] => 8428646daa48075de6d6876620749736
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2014 год, номер 4

L(О±)–устойчивые неявные методы Рунге-Кутты переменного порядка со второй производной

Р. И. Окуонгае, М. Н. О. Ихиле
University of Benin, P.M.B 1154, Benin City, Edo state, Nigeria
okunoghae01@yahoo.co.uk
Ключевые слова: вторая производная, метод Рунге-Кутты, коллокация, интерполяция
Страницы: 373-387

Аннотация

В данной статье рассматривается обобщение популярных методов Рунге-Кутты (МРК) до методов Рунге-Кутты со второй производной (МРКВП) для прямого решения жестких начальных задач (НЗ) обыкновенных дифференциальных уравнений (ОДУ). В этих методах используется техника коллокации и интерполяции. Последняя стадия входной аппроксимации идентична методу на выходе. МРКВП являются L(α)-устойчивыми для исследуемых методов. Приводятся численные эксперименты, в которых один из этих методов сравнивается с методом Рунге-Кутты с двумя производными (МРКДП) и линейным многошаговым методом со второй производной (ЛММВП).