Многоточечный численный интегратор с тригонометрическими коэффициентами для начальных задач с периодическими решениями
Дж.О. Эхиги1,2, С.Н. Джатор3, С.А. Окунуга4
1Nanjing Agricultural University, Nanjing 210095, China jehigie@unilag.edu.ng 2University of Lagos, Lagos 23401, Nigeria 3Austin Peay State University, Clarksville, TN, USA Jators@apsu.edu 4Department of Mathematics, Lagos 23401, Nigeria sokunuga@unilag.edu.ng
Ключевые слова: блочный метод, периодическое решение, тригонометрические коэффициенты, метод коллокации, block method, periodic solution, trigonometric coefficients, collocation technique
Страницы: 329-344
Аннотация
На основе метода коллокации мы вводим унифицированный подход для получения семейства многоточечных численных интеграторов с тригонометрическими коэффициентами для численного решения периодических начальных задач. Представлен практический трехточечный численный интегратор, коэффициенты которого являются обобщением классических линейных многошаговых методов, коэффициенты которых являются функциями оценки угловой частоты ω . Метод коллокации дает непрерывный метод, из которого восстанавливаются основной и вспомогательные методы и выражаются в виде блочно-матричной конечно-разностной формулы, которая интегрирует дифференциальное уравнение второго порядка по неперекрывающимся интервалам без предикторов. Представлены и исследованы некоторые свойства численного интегратора. Приводятся численные примеры для иллюстрации точности метода.
DOI: 10.15372/SJNM20170308 |