Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 13.58.18.135
    [SESS_TIME] => 1733301423
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 2476ad144e00e4e12e95f744d0adc594
    [UNIQUE_KEY] => 89cbe4258e5c4131798d7f279cf4b763
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2018 год, номер 1

Согласованные численные схемы для решения нелинейных обратных задач идентификации источников градиентными алгоритмами и методами Ньютона-Канторовича

А.В. Пененко
Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, просп. Акад. М.А. Лаврентьева, 6, Новосибирск, 630090
a.penenko@yandex.ru
Ключевые слова: обратная задача идентификации источников, метод Ньютона-Канторовича, градиентный алгоритм, сопряженные уравнения, оператор чувствительности, согласованные численные схемы, inverse source problem, Newton-Kantorovich method, gradient-type algorithm, adjoint equations, sensitivity operator, consistent numerical schemes
Страницы: 99-116

Аннотация

Рассмотрены алгоритмы решения обратной задачи идентификации источников для систем нелинейных обыкновенных дифференциальных уравнений продукции-деструкции. Построены согласованные, в смысле тождества Лагранжа, численные схемы для решения прямых и сопряженных задач. На основе сопряженных уравнений построен оператор чувствительности и его дискретный аналог, связывающий возмущения искомых параметров модели с возмущениями измеряемых величин. Этот оператор позволяет получить семейство квазилинейных операторных уравнений, связывающих искомые величины и данные обратной задачи. Для решения таких уравнений можно применять методы ньютоновского типа. В работе приводится численное сравнение эффективности градиентных алгоритмов на основе согласованных и несогласованных численных схем, а также алгоритма Ньютона-Канторовича при решении обратной задачи идентификации источника в нелинейной модели Лоренца.

DOI: 10.15372/SJNM20180107