Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.149.243.86
    [SESS_TIME] => 1732192402
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => badb44d1182c89ea5a65f2c88f59b76e
    [UNIQUE_KEY] => 503aa84df78d1c224f02dbd68e1e3885
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2020 год, номер 3

Решение уравнения Пуассона с особенностями методом коллокации и наименьших квадратов

В.А. Беляев
Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук, Новосибирск, Россия
belyaevasily@mail.ru
Ключевые слова: метод коллокации и наименьших квадратов, уравнение Пуассона, краевая задача, особенность, полиномы Чебышева, многосеточный алгоритм, least-squares collocation method, Poisson equation, boundary value problem, singularity, Chebyshev polynomials, multigrid algorithm
Страницы: 249-263

Аннотация

Предложены и реализованы новые h-, p- и hp-варианты метода коллокации и наименьших квадратов (КНК) решения задачи Дирихле для уравнения Пуассона. В работе рассматриваются примеры решения задач с особенностями в виде больших градиентов, высокой скорости роста производных решения с ростом порядка дифференцирования, разрыва вторых производных на границе области в угловых точках, осциллирующего решения с различными частотами при наличии точки разрыва типа полюс для производных любого порядка. Новые варианты метода основаны на специальном выборе точек коллокации в корнях полиномов Чебышева первого рода, а также базисных функций в виде произведения полиномов Чебышева. Проанализировано поведение численного решения на последовательности сеток и при увеличении степени аппроксимирующего полинома с использованием точных аналитических решений. Получены формулы для операции продолжения, необходимые для перехода с грубой сетки на более мелкую на многосеточном комплексе в методе Федоренко.

DOI: 10.15372/SJNM20200302