Математическое моделирование и прогнозирование COVID-19 в Москве и Новосибирской области
О.И. Криворотько1,2,3, С.И. Кабанихин1,2,3, Н.Ю. Зятьков1, А. Приходько1,2,3, Н. Прохошин2,3, М.А. Шишленин1,2,3
1Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия krivorotko.olya@mail.ru 2Математический центр в Академгородке, Новосибирск, Россия ksi52@mail.ru 3Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия a.prikhodko@g.nsu.ru
Ключевые слова: математическое моделирование, эпидемия, COVID-19, модель SEIR-HCD, модель SEIR-D, сценарии развития, обратная задача, идентифицируемость, оптимизация, дифференциальная эволюция, имитация отжига, генетический алгоритм, Москва, Новосибирская область
Страницы: 395-414
Аннотация
В работе исследованы задачи уточнения неизвестных параметров математических моделей SEIR-HCD и SEIR-D распространения коронавирусной инфекции COVID-19 по дополнительной информации о количестве выявленных случаев заболеваний, смертности, коэффициенте самоизоляции и проведенных тестах для города Москвы и Новосибирской области с 23.03.2020. В SEIR-HCD модели популяция разделена на семь, а в SEIR-D -- на пять групп со схожими признаками и с вероятностями перехода между группами, зависящими от конкретного региона. Проведен анализ идентифицируемости математической модели SEIR-HCD, который выявил наименее чувствительные к дополнительной информации неизвестные параметры. Задачи уточнения параметров сведены к задачам минимизации целевых функционалов, которые решены с помощью стохастических методов (имитация отжига, дифференциальная эволюция, генетический алгоритм). Разработаны прогностические сценарии развития заболевания в Москве и Новосибирской области и проведен анализ применимости разработанных моделей.
DOI: 10.15372/SJNM20200404 |