Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.144.101.75
    [SESS_TIME] => 1732195769
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 9cf53b73b26e20e6aeb9f3e803c636a5
    [UNIQUE_KEY] => d9d5a8453ad4622c0f6a24315535b6a9
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2021 год, номер 2

Вычислительная модель фильтрации жидкости в трещиновато-пористых средах

М.И. Иванов, И.А. Кремер, Ю.М. Лаевский
Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия
ivanov@sscc.ru
Ключевые слова: фильтрация жидкости, трещиновато-пористая среда, двойная пористость, поровые блоки, трещины, законы сохранения, смешанный метод конечных элементов, противопотоковая схема, принцип максимума
Страницы: 145-166

Аннотация

В статье рассматривается вычислительная 3D-модель двойной пористости фильтрации двухфазной несжимаемой жидкости в трещиновато-пористой среде. Законы сохранения сформулированы в интегральной форме, и для их пространственной аппроксимации используется комбинация смешанного метода конечных элементов для определения суммарных скоростей потоков и давлений и метода конечных объемов для определения насыщенностей в поровых блоках и в трещинах. Аппроксимация уравнений для насыщенностей осуществляется по явной схеме с противопотоковой технологией для устранения нефизичных осцилляций. Рассматриваемая модель включает нагнетательные и добывающие скважины, на которых заданы суммарные дебиты. Для суммарных скоростей и давлений формулируется задача Неймана, для которой указывается условие однозначной разрешимости и предлагается способ ее решения без дополнительных условий. Для явной противопотоковой схемы решения уравнений для насыщенностей установлен слабый принцип максимума, иллюстрируемый вычислительными экспериментами.

DOI: 10.15372/SJNM20210203
Добавить в корзину
Товар добавлен в корзину