Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 18.117.78.87
    [SESS_TIME] => 1732193207
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 0fdafc8b64632090c2dd8eb8025673ac
    [UNIQUE_KEY] => eb809ab277210b33b26fbd428fb6fecb
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2021 год, номер 2

Липшицево отображение и его применение к анализу сходимости варианта метода Ньютона

М.Х. Рашид1,2
1Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 55 Zhongguancun east road, Haidian district, Beijing-100190, China
harun_math@ru.ac.bd
2University of Rajshahi, Rajshahi-6205, Bangladesh
Ключевые слова: многозначные отображения, липшицевы отображения, обобщенные уравнения, вариант метода Ньютона, полулокальная сходимость
Страницы: 193-212

Аннотация

Пусть X и Y - банаховы пространства. Пусть f : Ω → Y - дифференцируемая по Фреше функция на открытом подмножестве Ω в X, а F - многозначное отображение с замкнутым графиком. Рассмотрим следующее обобщенное уравнение: 0in f(x)+ F(x). В статье исследуется вариант метода Ньютона для решения обобщенного уравнения (1) и анализируются полулокальная и локальная сходимость этого метода при более слабых условиях, чем условия Жан-Алексиса и Петруса [13]. Показано, что этот вариант метода Ньютона сходится сверхлинейно, когда производная Фреше от f является (L,p)-Гельдер непрерывной и (f+F)-1-липшицевой в контрольной точке. Кроме того, даны применения этого метода к задаче нелинейного программирования и вариационному неравенству. Приведены численные эксперименты для иллюстрации теоретических результатов.

DOI: 10.15372/SJNM20210206
Добавить в корзину
Товар добавлен в корзину