Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 18.191.87.157
    [SESS_TIME] => 1732349537
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 69904e46588e09c9e5b356f844d87bd8
    [UNIQUE_KEY] => 1eee0e3c880ff8542ef1a603eca8c6e8
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2021 год, номер 3

Управление воздействиями в правых частях большой системы ОДУ блочной структуры и оптимизация источников в неразделенных краевых условиях

К.Р. Айдазаде1,2, Е.Р.к. Ашрафова1,3
1Институт систем управления Национальной академии наук Азербайджана, Баку, Азербайджан
kamil_aydazade@rambler.ru
2Институт математики и механики Национальной академии наук Азербайджана, Баку, Азербайджан
3Бакинский государственный университет, Баку, Азербайджан
ashrafova.yegana@gmail.com
Ключевые слова: сложный объект, блочная структура, большая система ОДУ, неразделенные условия, градиент функционала, условия оптимальности, метод прогонки
Страницы: 229-251

Аннотация

В работе исследуется задача управления сложным объектом, описываемым большой системой ОДУ блочной структуры с неразделенными между блоками краевыми условиями. Оптимизируемыми являются управления в правых частях уравнений и значения параметров источников в краевых условиях. Для решения задачи оптимального управления предлагается применить численные методы оптимизации первого порядка, использующие формулы градиента функционала, участвующие в полученных необходимых условиях оптимальности. Для решения прямой и сопряженной краевых задач, имеющих блочную структуру и неразделенные нелокальные краевые условия, предложены специальные схемы метода прогонки, учитывающие специфику систем ОДУ и краевых условий, позволяющие производить перенос краевых условий для каждого блока и каждого краевого условия в блоке независимо друг от друга. Приводятся результаты численных экспериментов, полученные при решении тестовой задачи, и их анализ.

DOI: 10.15372/SJNM20210301
Добавить в корзину
Товар добавлен в корзину