Решение вырожденной задачи Неймана смешанным методом конечных элементов
М.И. Иванов, И.А. Кремер, Ю.М. Лаевский
Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия ivanov@sscc.ru
Ключевые слова: задача Неймана, обобщенная постановка, множители Лагранжа, смешанный метод конечных элементов, седловая система линейных алгебраических уравнений, ядро матрицы
Страницы: 385-401
Аннотация
В статье предлагается новый способ численного решения вырожденной задачи Неймана для уравнения диффузии в смешанной постановке. В основе излагаемого подхода лежит включение условия однозначной разрешимости задачи в одно из уравнений системы с использованием множителя Лагранжа с последующим понижением ее порядка. Доказаны утверждения об однозначной разрешимости сконструированной задачи и об ее эквивалентности исходной смешанной постановке в подпространстве. Осуществлена аппроксимация задачи на основе смешанного метода конечных элементов. Исследован вопрос об однозначной разрешимости полученной седловой системы линейных алгебраических уравнений. Теоретические результаты проиллюстрированы численными экспериментами.
DOI: 10.15372/SJNM20220404 |