Формулы численного дифференцирования функций с большими градиентами
А.И. Задорин
Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук, Новосибирск, Россия zadorin@ofim.oscsbras.ru
Ключевые слова: функция одной переменной, большие градиенты, специальная формула численного дифференцирования, оценка погрешности
Страницы: 17-26
Аннотация
Исследуется вопрос численного дифференцирования функций с большими градиентами. Предполагается, что функция содержит составляющую, известную с точностью до множителя и отвечающую за большие градиенты функции. Применение к таким функциям классических формул для вычисления производных может приводить к существенным погрешностям. Исследуются специальные формулы численного дифференцирования на равномерной сетке, точные на выделенной погранслойной составляющей. Сформулированы условия, при выполнении которых оценка погрешности разностной формулы для производной не зависит от градиентов погранслойной составляющей. В случае экспоненциального пограничного слоя при вычислении производной произвольно заданного порядка получены оценки погрешности, равномерные по малому параметру. Приведены результаты численных экспериментов.
DOI: 10.15372/SJNM20230102 EDN: VHGEXI
|