Метод коллокации для уравнения КдФ-Кавахары на основе тригонометрического базиса B-сплайнов пятой степени
Б. Караагац1, А. Эсен2, К.М. Оволаби3, Е. Пиндза4,5
1Department of Mathematics Education, Adiyaman University, Adiyaman, Turkey bkaraagac@adiyaman.edu.tr 2Department of Mathematics, Inonu University, Malatya, Turkey alaattin.esen@inonu.edu.tr 3Department of Mathematical Sciences, Federal University of Technology Akure, Akure, Nigeri kmowolabi@futa.edu.ng 4Department of Mathematics and Applied Mathematics University of Pretoria, Department of Mathematics and Applied Mathematics University of Pretoria pinzaedson@gmail.com 5Department of Mathematics and Statistics, Tshwane University of Technology, Department of Mathematics and Statistics, Tshwane University of Technology
Ключевые слова: уравнение КдФ-Кавахары, метод коллокации, тригонометрический базис B-сплайнов пятой степени, устойчивость
Страницы: 263-276
Аннотация
В данной работе рассматривается эффективный численный метод - метод коллокации - для получения численных решений уравнения КдФ-Кавахары. Численный метод основан на конечно-элементной формулировке и сплайн-интерполяции на основе тригонометрического базиса B-сплайнов пятой степени. Сначала уравнение КдФ-Кавахары распадается на связанное уравнение с использованием вспомогательной переменной вида υ=uxxx. Затем метод коллокации применяется к связанному уравнению вместе с разностью вперед и формулой Кранка-Николсона. Благодаря этому мы получаем систему алгебраических уравнений в терминах переменных времени и на основе тригонометрического базиса B-сплайнов пятой степени. Для определения ошибки между численным и точным решениями вычисляются нормы ошибки L2 и L∞. Результаты иллюстрируются на двух численных примерах с их графическим представлением и сравнением с другими методами.
DOI: 10.15372/SJNM20230303 EDN: CRCLFM
|