Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 44.192.48.196
    [SESS_TIME] => 1718958303
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => eb952c0bed66390b02fa55b1a0514b52
    [UNIQUE_KEY] => 3332f755f692a42eaa005abe579b25a6
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2021 год, номер 2

Исследование погрешностей при решении задач для простейших уравнений математической физики итерационными методами

В.П. Житников1, Н.М. Шерыхалина1, Р.Р. Муксимова2
1Уфимский государственный авиационный технический университет, Уфа, Россия
zhitnik@mail.ru
2Санкт-Петербургский государственный университет гражданской авиации, Санкт-Петербург, Россия
rose.r.mux@gmail.com
Ключевые слова: уравнение теплопроводности, неявная схема, уравнение Лапласа, бигармоническое уравнение, метод итераций, численная фильтрация
Страницы: 131-144

Аннотация

Проведено исследование погрешности, вызванной неточностью решения систем уравнений итерационными методами. Для осесимметричного уравнения теплопроводности найдена верхняя оценка погрешности, которая накапливается за несколько шагов по времени. Оценка показывает линейную зависимость погрешности от порогового значения критерия ограничения числа итераций, квадратичный рост от числа разбиений по пространству и ее независимость от числа разбиений по времени. Вычислительный эксперимент показал хорошее соответствие полученной оценки реальным погрешностям при краевых и начальных условиях различного вида. Для уравнения Лапласа эмпирически обнаружен линейный рост погрешности, вызванной ограничением точности при применении итерационного метода, и квадратичный рост от числа разбиений по пространству n. Для бигармонического уравнения обнаружен рост аналогичной погрешности пропорционально n4.

DOI: 10.15372/SJNM20210202
Добавить в корзину
Товар добавлен в корзину