Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.21.159.223
    [SESS_TIME] => 1732350061
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => df0dce6670b1a9c43cca193ac317e404
    [UNIQUE_KEY] => bdbb87ab825195282fdfe792e4eb7b57
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2020 год, номер 4

О монотонности схемы CABARET, аппроксимирующей многомерный скалярный закон сохранения

В.В. Остапенко, Т.В. Протопопова
Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук, Новосибирск, 630090
ostapenko_vv@ngs.ru
Ключевые слова: разностная схема CABARET, многомерный скалярный закон сохранения, свойство монотонности
Страницы: 431-440

Аннотация

Проведен анализ монотонности двухслойной по времени схемы CABARET, аппроксимирующей многомерный скалярный закон сохранения. Предложена модификация этой схемы, которая в линейном приближении сохраняет монотонность пространственно одномерных разностных решений и, как следствие, обеспечивает подавление нефизических осцилляций при расчете многомерных разрывных решений. Приведены результаты тестовых расчетов, иллюстрирующие преимущества модифицированной схемы.

DOI: 10.15372/SJNM20200406